Kernel Methods aren’t Dead Yet: Using
Kernel Methods on Large Datasets
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Kernel Methods aka the “kernel trick”, most used in
Support Vector Machines (SVMs)

What makes SVMs difficult to use on large scale
data?

How can we overcome these issues to scale to large
datasets

Methods one could use to scale out to a distributed
SVM training solution



Kernel Methods find a linear hyper plane in a different
feature space using the “kernel trick”

Support vector
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Kernel projects into a hlgher dimensional space, making
the solution in the original space non-linear

Unlike Nearest Neighbor, a=0 don’t contribute, making
solution sparse

Most common kernel is the Radial Basis Function
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SVM became very popular after introduction in the
1990s, often obtained state-of-the-art accuracies

More theory behind the method, less ad hoc than
Random Forest and Neural Networks

Swapping out the kernel used allows for changing a
small amount of code but getting a different type of
solution

Kernel trick allows applying SVMs to different

features
Strings, feature vectors of different length



» Exact solutions take O(n3) time. SMO empirically gets

the solution in O(n2-5*¢), but still slow
LIBSVM most common solver

» Caching of kernel evaluations critical for performance,
but caching all O(n?) values is impractical

» Grid Search for regularization penalty C and RBF width o
compounds the already slow time to solve

Bad C and o combinations cause worst case behavior. Makes
distributed Grid Search difficult due to drastic runtime differences
between parameter combinations

Makes runtime go from O(n25+¢) =» O(n3)

Fails to reuse cached kernel values



Speed Over Accuracy: Approximation

» Critical observation is that O(n3) runtime is only for
exact solvers. Approximations may provide a huge
performance boost for a small degradation of
accuracy.

Especially useful for grid search

Approximate solvers have been used in Linear methods and

Neural Networks (SGD, AdaGrad, etc) for a long time now
* How can you do an ‘approximate’ SVM?

Explicitly form an approximate feature space, then use a linear
solver

Perform SGD on and update the a values
Solve SVM by taking approximate steps to update a values



Popularized in 2007 with “Random Kitchen Sinks”
Use some transformation ¢(x) such that

o(x)Tp(y) ~ K(z,y)

Original x may be D dimensions, approximate space
can be of dimension B, which is specified beforehand

Increasing B increases the accuracy of the approximation, but
slower to take dot products
By making ¢(x)relatively cheap to compute, we can
then use faster linear solvers (approximate or exact)
to solve the problem using the new features



Only works for certain kernels, need to derive and
code new transform for every desired kernel
RBF Kernel form presented below
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» Naive solutions would be to simply update a on
every error, similar to Perceptron
This would add an unbounded number of SVs. Even if we only
add a SV every c steps, one pass of the data would require
(n>+n)/(2c) kernel products
» True support vectors from the SVM may be
redundant, if we can avoid the redundancy we can
reduce the number of support vectors

» We would like to bound ourselves to using only B
support vectors



» First introduced in the Kernel RLS paper in 2004.
Check to see if a new SV can be adequately
represented by a combination of the existing SVs

If the approximation has an error less than some 0, use the
approximation. Else, add the SV

» Two different bounds.

We can always force the projection once we hit B support
vectors

Every desired bound B can be achieved via some value of 6

» Works for any Kernel, O(B2) work per update.
OéiK(aj’ia y) =+ OéjK(CCja y) ~ &K(jj7 y)? \V/y



» Want to be able find the ‘merged’ support vector that
best solves
Similar to finding the pre-image in Kernel PCA

» Solution for RBF kernel proposed in “Multi-class

pegasos on a budget” in 2010

Always merge the newest SV with the pre-existing ones,
updates can be done in O(B) time
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Images taken from: Wang, Z., Crammer, K., & Vucetic, S. (2012). Breaking the Curse of Kernelization : Budgeted Stochastic Gradient
Descent for Large-Scale SVM Training. The Journal of Machine Learning Research, 13(1), 3103—3131.




Grid Search Examples

Datasets
aga, n=32,561, D=123
mnist, n=60,000, D=784
Training Methods
LIBSVM
Random Kitchen Sinks, Linear SVM via SGD w/ AdaGrad (Top Left)
Random Kitchen Sinks, Linear SVM via exact solver (Top Right)
Kernel SGD using SV Merging (Bot Left)
Kernel SGD using Projection and 6=0.05 (Bot Right)
Approximations are significantly faster for these smaller datasets
Speed advantage will increase with data size due to better big O

Even with small budgets, accurate enough to find good parameters

All results run sequentially with a single core

LIBSVM given 5 GB of memory for caching
Larger cache wasn’t stable on my machine
2.66 GHz i5, 16GB of 1067 MHz RAM



Grid Search Examples: aga
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Grid Search Examples: aga
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Grid Search Examples: mnist

O




Grid Search Examples: mnist
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Grid Search Runtimes
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Speedup

LIBSVM 21 hours 19 minutes -

RKS SGD w/ AdaGrad 32 minutes 40X
RKS Exact 2 hours 30 minutes 8.5%
Merge RBF 3 hours 10 minutes 6.7X

Projection 1 hour 25 minutes 15X

Speedup

LIBSVM 16 days 6 hours 12 minutes -

RKS SGD w/ AdaGrad 1 hour 25 minutes 275X
RKS Exact 3 days 7 hours 48 minutes 4.9X
Merge RBF 18 hours 44 minutes 20.8x
Projection 13 hour 34 minutes 28.8x




While not ‘perfect’, almost always gets a pair of parameters that
would have the same top accuracies as LIBSVM
Even when it doesn’t, still a reasonable pair

With respect to sample size, presented methods are O(n)
All algorithms much better for a distributed grid search

All parameter pairs should take similar amounts of time
Fixes the issues of imbalanced work loads
All use a fixed and predictable amount of memory
No need to cache any kernel products
All the SGD based ones can be done online
Worst case behavior just means bad accuracy and is predictable
Easy to run as Hadoop Jobs

Can take the 16 days of saved computation and use LIBSVM on the
final selected C and o
GPU solvers can be 97x-121x faster than standard LIBSVM for some problems



» What if the dataset is too large for training even one
LIBSVM model?

» Some distributed SVM algorithms already exist:

PSVM: Parallelizing Support Vector Machines on Distributed
Computers (from Google, open source)

P-packSVM: Parallel Primal grAdient desCent Kernel SVM (by
Microsoft)

» Distributed algorithm that could be implemented:
Building Support Vector Machines with Reduced Classifier
Complexity

Similar to the projection method, but iterative and selects new basis
vectors

Could be implemented on top of Mahout using distributed matrices
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