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Kernel Methods aren’t Dead Yet: Using 
Kernel Methods on Large Datasets 



What is this about? 

�  Kernel Methods aka the “kernel trick”, most used in 
Support Vector Machines (SVMs) 

�  What makes SVMs difficult to use on large scale 
data? 

�  How can we overcome these issues to scale to large 
datasets 

�  Methods one could use to scale out to a distributed 
SVM training solution 



Kernel Methods 

�  Kernel Methods find a linear hyper plane in a different 
feature space using the “kernel trick” 

 
�  Kernel projects into a higher dimensional space, making 

the solution in the original space non-linear 
�  Unlike Nearest Neighbor, α=0 don’t contribute, making 

solution sparse 
�  Most common kernel is the Radial Basis Function 
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Kernel Methods 

�  SVM became very popular after introduction in the 
1990s, often obtained state-of-the-art accuracies  

�  More theory behind the method, less ad hoc than 
Random Forest and Neural Networks 

�  Swapping out the kernel used allows for changing a 
small amount of code but getting a different type of 
solution 

�  Kernel trick allows applying SVMs to different 
features 
¡  Strings, feature vectors of different length 



Problems in Practice 

�  Exact solutions take O(n3) time. SMO empirically gets 
the solution in O(n2.5±ε), but still slow 
¡  LIBSVM most common solver 

�  Caching of kernel evaluations critical for performance, 
but caching all O(n2) values is impractical 

�  Grid Search for regularization penalty C and RBF width σ 
compounds the already slow time to solve 
¡  Bad C and σ combinations cause worst case behavior. Makes 

distributed Grid Search difficult due to drastic runtime differences 
between parameter combinations 
÷ Makes runtime go from O(n2.5±ε) è O(n3)  
÷ Fails to reuse cached kernel values 



Speed Over Accuracy: Approximation 

�  Critical observation is that O(n3) runtime is only for 
exact solvers. Approximations may provide a huge 
performance boost for a small degradation of 
accuracy.  
¡  Especially useful for grid search 
¡  Approximate solvers have been used in Linear methods and 

Neural Networks (SGD, AdaGrad, etc) for a long time now 
�  How can you do an ‘approximate’ SVM? 

¡  Explicitly form an approximate feature space, then use a linear 
solver 

¡  Perform SGD on and update the α values 
¡  Solve SVM by taking approximate steps to update α values 



Approximate Feature Spaces 

�  Popularized in 2007 with “Random Kitchen Sinks” 
�  Use some transformation          such that 

�  Original x may be D dimensions, approximate space 
can be of dimension B, which is specified beforehand 
¡  Increasing B increases the accuracy of the approximation, but 

slower to take dot products 
�  By making         relatively cheap to compute, we can 

then use faster linear solvers (approximate or exact) 
to solve the problem using the new features 

�̃(x)T �̃(y) ⇡ K(x, y)

�̃(x)

�̃(x)



Approximate Feature Spaces 

�  Only works for certain kernels, need to derive and 
code new transform for every desired kernel 
¡  RBF Kernel form presented below  

�  O(D B) time per dataum 

ˆ

�(x) = cos(x

T
WD,B +

~

b) ·
r

2

⇡

Wi,j ⇠ N
 
0,

r
1

2�

2

!

~

bi ⇠ U (0, 2⇡)



Kernel SGD 

�  Naïve solutions would be to simply update α on 
every error, similar to Perceptron 
¡  This would add an unbounded number of SVs. Even if we only 

add a SV every c steps, one pass of the data would require 
(n2+n)/(2c) kernel products 

�  True support vectors from the SVM may be 
redundant, if we can avoid the redundancy we can 
reduce the number of support vectors 

�  We would like to bound ourselves to using only B 
support vectors 



Kernel SGD: Projection 

�  First introduced in the Kernel RLS paper in 2004. 
Check to see if a new SV can be adequately 
represented by a combination of the existing SVs 
¡  If the approximation has an error less than some δ, use the 

approximation. Else, add the SV 

�  Two different bounds.  
¡  We can always force the projection once we hit B support 

vectors 
¡  Every desired bound B can be achieved via some value of δ 

�  Works for any Kernel, O(B2) work per update.  
↵iK(xi, y) + ↵jK(xj , y) ⇡ ↵̂K(x̂, y), 8y



Kernel SGD: Merging SVs 

�  Want to be able find the ‘merged’ support vector that 
best solves 
¡  Similar to finding the pre-image in Kernel PCA 

�  Solution for RBF kernel proposed in “Multi-class 
pegasos on a budget” in 2010 
¡  Always merge the newest SV with the pre-existing ones, 

updates can be done in O(B) time 

↵iK(xi, y) + ↵jK(xj , y) ⇡ ↵̂K(x̂, y), 8y

Images taken from: Wang, Z., Crammer, K., & Vucetic, S. (2012). Breaking the Curse of Kernelization : Budgeted Stochastic Gradient 
Descent for Large-Scale SVM Training. The Journal of Machine Learning Research, 13(1), 3103–3131. 



Grid Search Examples 

�  Datasets 
¡  a9a, n=32,561, D=123 
¡  mnist, n=60,000, D=784 

�  Training Methods 
¡  LIBSVM 
¡  Random Kitchen Sinks, Linear SVM via SGD w/ AdaGrad (Top Left) 
¡  Random Kitchen Sinks, Linear SVM via exact solver (Top Right) 
¡  Kernel SGD using SV Merging (Bot Left) 
¡  Kernel SGD using Projection and δ=0.05 (Bot Right) 

�  Approximations are significantly faster for these smaller datasets 
¡  Speed advantage will increase with data size due to better big O 

�  Even with small budgets, accurate enough to find good parameters 
�  All results run sequentially with a single core 

¡  LIBSVM given 5 GB of memory for caching 
÷  Larger cache wasn’t stable on my machine 

¡  2.66 GHz i5, 16GB of 1067 MHz RAM 



Grid Search Examples: a9a 



Grid Search Examples: a9a 



Grid Search Examples: mnist 



Grid Search Examples: mnist 



Grid Search Runtimes 

a9a Runtime Speedup 
LIBSVM 21 hours 19 minutes - 
RKS SGD w/ AdaGrad 32 minutes 40x 
RKS Exact 2 hours 30 minutes 8.5x 
Merge RBF 3 hours 10 minutes 6.7x 
Projection 1 hour 25 minutes 15x 

mnist Runtime Speedup 
LIBSVM 16 days 6 hours 12 minutes - 
RKS SGD w/ AdaGrad 1 hour 25 minutes 275x 
RKS Exact 3 days 7 hours 48 minutes 4.9x 
Merge RBF 18 hours 44 minutes 20.8x 
Projection 13 hour 34 minutes 28.8x 



Grid Search Results 

�  While not ‘perfect’, almost always gets a pair of parameters that 
would have the same top accuracies as LIBSVM 
¡  Even when it doesn’t, still a reasonable pair 

�  With respect to sample size, presented methods are O(n)  
�  All algorithms much better for a distributed grid search 

¡  All parameter pairs should take similar amounts of time 
÷  Fixes the issues of imbalanced work loads 

¡  All use a fixed and predictable amount of memory 
÷  No need to cache any kernel products 

¡  All the SGD based ones can be done online 
÷  Worst case behavior just means bad accuracy and is predictable 

¡  Easy to run as Hadoop Jobs 
�  Can take the 16 days of saved computation and use LIBSVM on the 

final selected C and σ 
¡  GPU solvers can be 97x-121x faster than standard LIBSVM for some problems 



Distributed SVM 

�  What if the dataset is too large for training even one 
LIBSVM model? 

�  Some distributed SVM algorithms already exist: 
¡  PSVM: Parallelizing Support Vector Machines on Distributed 

Computers (from Google, open source) 
¡  P-packSVM: Parallel Primal grAdient desCent Kernel SVM (by 

Microsoft) 
�  Distributed algorithm that could be implemented: 

¡  Building Support Vector Machines with Reduced Classifier 
Complexity 
÷  Similar to the projection method, but iterative and selects new basis 

vectors 
÷ Could be implemented on top of Mahout using distributed matrices 



References 

�  Platt, J. C. (1998). Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines. 
In Advances in kernel methods (pp. 185 – 208). 

�  Shevade, S. K., Keerthi, S. S., Bhattacharyya, C., & Murthy, K. K. (1999). Improvements to the SMO algorithm 
for SVM regression. Control Division, Dept. of Mechanical Engineering (Vol. CD-99–16, pp. CD–99–16). 
Control Division, Dept. of Mechanical Engineering. doi:10.1109/72.870050 

�  Engel, Y., Mannor, S., & Meir, R. (2004). The Kernel Recursive Least-Squares Algorithm. IEEE Transactions 
on Signal Processing, 52(8), 2275–2285. doi:10.1109/TSP.2004.830985 

�  Keerthi, S. S., & Decoste, D. (2006). Building Support Vector Machines with Reduced Classifier Complexity. 
Journal of Machine Learning Research, 7, 1493–1515. 

�  Rahimi, A., & Recht, B. (2007). Random Features for Large-Scale Kernel Machines. In Neural Information 
Processing Systems. 

�  Chang, E. Y., Zhu, K., Wang, H., Bai, H., Li, J., Qiu, Z., & Cui, H. (2007). Psvm: Parallelizing support vector 
machines on distributed computers. In Neural Information Processing Systems. 

�  Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S. S., & Sundararajan, S. (2008). A Dual Coordinate Descent 
Method for Large-scale Linear SVM. In Proceedings of the 25th international conference on Machine learning 
- ICML ’08 (pp. 408–415). New York, New York, USA: ACM Press. doi:10.1145/1390156.1390208 

�  Zhu, Z. A., Chen, W., Wang, G., Zhu, C., & Chen, Z. (2009). P-packSVM: Parallel Primal grAdient desCent 
Kernel SVM. In 2009 Ninth IEEE International Conference on Data Mining (pp. 677–686). 

�  Wang, Z., Crammer, K., & Vucetic, S. (2010). Multi-class pegasos on a budget. In 27th International 
Conference on Machine Learning (pp. 1143–1150). 

�  Cotter, A., Srebro, N., & Keshet, J. (2011). A GPU-tailored approach for training kernelized SVMs. In 
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining - 
KDD ’11 (pp. 805–813). New York, New York, USA: ACM Press. doi:10.1145/2020408.2020548 

�  Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on 
Intelligent Systems and Technology, 2(3). doi:10.1145/1961189.1961199 


