
B Y E D W A R D R A F F

Kernel Methods aren’t Dead Yet: Using
Kernel Methods on Large Datasets

What is this about?

�  Kernel Methods aka the “kernel trick”, most used in
Support Vector Machines (SVMs)

�  What makes SVMs difficult to use on large scale
data?

�  How can we overcome these issues to scale to large
datasets

�  Methods one could use to scale out to a distributed
SVM training solution

Kernel Methods

�  Kernel Methods find a linear hyper plane in a different
feature space using the “kernel trick”

�  Kernel projects into a higher dimensional space, making

the solution in the original space non-linear
�  Unlike Nearest Neighbor, α=0 don’t contribute, making

solution sparse
�  Most common kernel is the Radial Basis Function

w

T
x =

nX

i=1

↵i K(

support vectorz}|{
svi , x)| {z }

kernel trick

K(x, y) = exp

�
��
x� y

��2
2

2�

2

!

Kernel Methods

�  SVM became very popular after introduction in the
1990s, often obtained state-of-the-art accuracies

�  More theory behind the method, less ad hoc than
Random Forest and Neural Networks

�  Swapping out the kernel used allows for changing a
small amount of code but getting a different type of
solution

�  Kernel trick allows applying SVMs to different
features
¡  Strings, feature vectors of different length

Problems in Practice

�  Exact solutions take O(n3) time. SMO empirically gets
the solution in O(n2.5±ε), but still slow
¡  LIBSVM most common solver

�  Caching of kernel evaluations critical for performance,
but caching all O(n2) values is impractical

�  Grid Search for regularization penalty C and RBF width σ
compounds the already slow time to solve
¡  Bad C and σ combinations cause worst case behavior. Makes

distributed Grid Search difficult due to drastic runtime differences
between parameter combinations
÷ Makes runtime go from O(n2.5±ε) è O(n3)
÷ Fails to reuse cached kernel values

Speed Over Accuracy: Approximation

�  Critical observation is that O(n3) runtime is only for
exact solvers. Approximations may provide a huge
performance boost for a small degradation of
accuracy.
¡  Especially useful for grid search
¡  Approximate solvers have been used in Linear methods and

Neural Networks (SGD, AdaGrad, etc) for a long time now
�  How can you do an ‘approximate’ SVM?

¡  Explicitly form an approximate feature space, then use a linear
solver

¡  Perform SGD on and update the α values
¡  Solve SVM by taking approximate steps to update α values

Approximate Feature Spaces

�  Popularized in 2007 with “Random Kitchen Sinks”
�  Use some transformation such that

�  Original x may be D dimensions, approximate space
can be of dimension B, which is specified beforehand
¡  Increasing B increases the accuracy of the approximation, but

slower to take dot products
�  By making relatively cheap to compute, we can

then use faster linear solvers (approximate or exact)
to solve the problem using the new features

�̃(x)T �̃(y) ⇡ K(x, y)

�̃(x)

�̃(x)

Approximate Feature Spaces

�  Only works for certain kernels, need to derive and
code new transform for every desired kernel
¡  RBF Kernel form presented below

�  O(D B) time per dataum

ˆ

�(x) = cos(x

T
WD,B +

~

b) ·
r

2

⇡

Wi,j ⇠ N

0,

r
1

2�

2

!

~

bi ⇠ U (0, 2⇡)

Kernel SGD

�  Naïve solutions would be to simply update α on
every error, similar to Perceptron
¡  This would add an unbounded number of SVs. Even if we only

add a SV every c steps, one pass of the data would require
(n2+n)/(2c) kernel products

�  True support vectors from the SVM may be
redundant, if we can avoid the redundancy we can
reduce the number of support vectors

�  We would like to bound ourselves to using only B
support vectors

Kernel SGD: Projection

�  First introduced in the Kernel RLS paper in 2004.
Check to see if a new SV can be adequately
represented by a combination of the existing SVs
¡  If the approximation has an error less than some δ, use the

approximation. Else, add the SV

�  Two different bounds.
¡  We can always force the projection once we hit B support

vectors
¡  Every desired bound B can be achieved via some value of δ

�  Works for any Kernel, O(B2) work per update.
↵iK(xi, y) + ↵jK(xj , y) ⇡ ↵̂K(x̂, y), 8y

Kernel SGD: Merging SVs

�  Want to be able find the ‘merged’ support vector that
best solves
¡  Similar to finding the pre-image in Kernel PCA

�  Solution for RBF kernel proposed in “Multi-class
pegasos on a budget” in 2010
¡  Always merge the newest SV with the pre-existing ones,

updates can be done in O(B) time

↵iK(xi, y) + ↵jK(xj , y) ⇡ ↵̂K(x̂, y), 8y

Images taken from: Wang, Z., Crammer, K., & Vucetic, S. (2012). Breaking the Curse of Kernelization : Budgeted Stochastic Gradient
Descent for Large-Scale SVM Training. The Journal of Machine Learning Research, 13(1), 3103–3131.

Grid Search Examples

�  Datasets
¡  a9a, n=32,561, D=123
¡  mnist, n=60,000, D=784

�  Training Methods
¡  LIBSVM
¡  Random Kitchen Sinks, Linear SVM via SGD w/ AdaGrad (Top Left)
¡  Random Kitchen Sinks, Linear SVM via exact solver (Top Right)
¡  Kernel SGD using SV Merging (Bot Left)
¡  Kernel SGD using Projection and δ=0.05 (Bot Right)

�  Approximations are significantly faster for these smaller datasets
¡  Speed advantage will increase with data size due to better big O

�  Even with small budgets, accurate enough to find good parameters
�  All results run sequentially with a single core

¡  LIBSVM given 5 GB of memory for caching
÷  Larger cache wasn’t stable on my machine

¡  2.66 GHz i5, 16GB of 1067 MHz RAM

Grid Search Examples: a9a

Grid Search Examples: a9a

Grid Search Examples: mnist

Grid Search Examples: mnist

Grid Search Runtimes

a9a Runtime Speedup
LIBSVM 21 hours 19 minutes -
RKS SGD w/ AdaGrad 32 minutes 40x
RKS Exact 2 hours 30 minutes 8.5x
Merge RBF 3 hours 10 minutes 6.7x
Projection 1 hour 25 minutes 15x

mnist Runtime Speedup
LIBSVM 16 days 6 hours 12 minutes -
RKS SGD w/ AdaGrad 1 hour 25 minutes 275x
RKS Exact 3 days 7 hours 48 minutes 4.9x
Merge RBF 18 hours 44 minutes 20.8x
Projection 13 hour 34 minutes 28.8x

Grid Search Results

�  While not ‘perfect’, almost always gets a pair of parameters that
would have the same top accuracies as LIBSVM
¡  Even when it doesn’t, still a reasonable pair

�  With respect to sample size, presented methods are O(n)
�  All algorithms much better for a distributed grid search

¡  All parameter pairs should take similar amounts of time
÷  Fixes the issues of imbalanced work loads

¡  All use a fixed and predictable amount of memory
÷  No need to cache any kernel products

¡  All the SGD based ones can be done online
÷  Worst case behavior just means bad accuracy and is predictable

¡  Easy to run as Hadoop Jobs
�  Can take the 16 days of saved computation and use LIBSVM on the

final selected C and σ
¡  GPU solvers can be 97x-121x faster than standard LIBSVM for some problems

Distributed SVM

�  What if the dataset is too large for training even one
LIBSVM model?

�  Some distributed SVM algorithms already exist:
¡  PSVM: Parallelizing Support Vector Machines on Distributed

Computers (from Google, open source)
¡  P-packSVM: Parallel Primal grAdient desCent Kernel SVM (by

Microsoft)
�  Distributed algorithm that could be implemented:

¡  Building Support Vector Machines with Reduced Classifier
Complexity
÷  Similar to the projection method, but iterative and selects new basis

vectors
÷ Could be implemented on top of Mahout using distributed matrices

References

�  Platt, J. C. (1998). Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines.
In Advances in kernel methods (pp. 185 – 208).

�  Shevade, S. K., Keerthi, S. S., Bhattacharyya, C., & Murthy, K. K. (1999). Improvements to the SMO algorithm
for SVM regression. Control Division, Dept. of Mechanical Engineering (Vol. CD-99–16, pp. CD–99–16).
Control Division, Dept. of Mechanical Engineering. doi:10.1109/72.870050

�  Engel, Y., Mannor, S., & Meir, R. (2004). The Kernel Recursive Least-Squares Algorithm. IEEE Transactions
on Signal Processing, 52(8), 2275–2285. doi:10.1109/TSP.2004.830985

�  Keerthi, S. S., & Decoste, D. (2006). Building Support Vector Machines with Reduced Classifier Complexity.
Journal of Machine Learning Research, 7, 1493–1515.

�  Rahimi, A., & Recht, B. (2007). Random Features for Large-Scale Kernel Machines. In Neural Information
Processing Systems.

�  Chang, E. Y., Zhu, K., Wang, H., Bai, H., Li, J., Qiu, Z., & Cui, H. (2007). Psvm: Parallelizing support vector
machines on distributed computers. In Neural Information Processing Systems.

�  Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S. S., & Sundararajan, S. (2008). A Dual Coordinate Descent
Method for Large-scale Linear SVM. In Proceedings of the 25th international conference on Machine learning
- ICML ’08 (pp. 408–415). New York, New York, USA: ACM Press. doi:10.1145/1390156.1390208

�  Zhu, Z. A., Chen, W., Wang, G., Zhu, C., & Chen, Z. (2009). P-packSVM: Parallel Primal grAdient desCent
Kernel SVM. In 2009 Ninth IEEE International Conference on Data Mining (pp. 677–686).

�  Wang, Z., Crammer, K., & Vucetic, S. (2010). Multi-class pegasos on a budget. In 27th International
Conference on Machine Learning (pp. 1143–1150).

�  Cotter, A., Srebro, N., & Keshet, J. (2011). A GPU-tailored approach for training kernelized SVMs. In
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining -
KDD ’11 (pp. 805–813). New York, New York, USA: ACM Press. doi:10.1145/2020408.2020548

�  Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2(3). doi:10.1145/1961189.1961199

