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ABSTRACT
The Normalized Compression Distance (NCD) has been used in

a number of domains to compare objects with varying feature

types. This �exibility comes from the use of general purpose com-

pression algorithms as the means of computing distances between

byte sequences. Such �exibility makes NCD particularly attractive

for cases where the right features to use are not obvious, such as

malware classi�cation. However, NCD can be computationally de-

manding, thereby restricting the scale at which it can be applied.

We introduce an alternative metric also inspired by compression,

the Lempel-Ziv Jaccard Distance (LZJD). We show that this new

distance has desirable theoretical properties, as well as comparable

or superior performance for malware classi�cation, while being

easy to implement and orders of magnitude faster in practice.

KEYWORDS
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Distance, Lempel-Ziv, Jaccard similarity

1 INTRODUCTION
The Normalized Compression Distance (NCD) [19] is a general pur-

pose method of measuring the similarity between any two arbitrary

objects. The NCD works via the use of compression algorithms,

using the sizes of compressed objects, individually and then when

concatenated, to compute a similarity between the two input ob-

jects. The NCD algorithm will be described in detail a little later

in this paper. Since compression is the basis of the NCD, it has

proven e�ective for comparing a wide variety of data objects, and

requires no domain knowledge to apply. In addition to its intuitive

appeal, the NCD also has theoretical underpinnings in terms of

Kolmogorov complexity that may inspire additional con�dence in

it.

These practical and theoretical properties make the NCD ap-

pealing in the context of malware detection and malware family
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classi�cation, which we will jointly refer to as malware classi�ca-

tion. Malware detection is a binary classi�cation problem in which

one tries to determine if a binary is benign or malicious, and fam-

ily classi�cation attempts to label a known malicious binary as a

member of one (or more) malware families. A number of others

have used the NCD to do these tasks successfully using di�erent

features, including API call sequences and the raw byte contents

of a �le [2, 4, 15, 28]. We are particularly interested in NCD for

malware since it can be used on raw bytes, requiring the use of

little, if any, domain knowledge.

The minimization of domain knowledge is desirable for this task

for a number of other reasons as well. Particularly, malware classi-

�cation is subject to concept drift, meaning the nature of malware

changes over time. This means our feature extraction process must

often change with it, requiring some level of ongoing maintenance

work. Malware itself will often intentionally break rules regarding

format speci�cation or attempt unde�ned behavior, requiring addi-

tional overhead for feature extraction which is compounded by the

changing nature of malware. The more advanced domain knowl-

edge approaches use dynamic analysis, which involves running the

malware in a virtualized environment. This adds signi�cant com-

plexity in practice, as malware can detect that its in a virtiualized

environment and alters its behavior, and the virtual environment

may have many inconsistencies with real environments that pre-

vent a system from generalizing in practice [23].

Malware classi�cation is also an excellent test bed for any-purpose

metrics such as NCD. Not only is malware classi�cation an impor-

tant problem in improving cyber security, but it is a domain for

which recent advanced in Machine Learning and Deep Learning

have yet to yield signi�cant gains. This is in contrast to problems

such as image and signal processing, where NCD has been applied

previously but is no longer needed [17, 27]. The nature of a real

malicious adversary makes feature selection and engineering partic-

ularly di�cult for this domain, which NCD can partially side-step

through its use of compression.

Unfortunately there exists a number of shortcomings with the

NCD that make its application to malware classi�cation di�cult.

While the theoretical underpinnings of NCD say it will behave like

a metric if certain conditions are met, it is often di�cult to meet

them in practice [9]. The nature of how compression algorithms

work also causes problems for larger input sequences [5]. Most

critically though, the computation time for the NCD is signi�cant.

This has limited its application to malware datasets of 10,000 sam-

ples or less[4]. We resolve the runtime and metric issues of NCD

with the new Lempel-Ziv Jaccard Distance (LZJD), which is a valid

distance metric and computationally e�cient to use in practice.

We perform extensive validation of our new technique by using



multiple datasets (with over 500,000 �les), with di�erent byte rep-

resentations, for both malware detection and family classi�cation,

and for both Microsoft and Android malware. In contrast, most

works in malware classi�cation use only one dataset (often 40,000

samples or less), choose one representation, and for one operating

system [e.g. 18, 24, 26, 29].

The remainder of our paper is organized as follows. We will

review the de�nition of NCD in section 2, and then introduce our

new distance metric in section 3. Focused on malware classi�cation,

we provide several experiments in section 4 that show our new

distance to be more accurate and orders of magnitude faster to

apply in practice. Given the accuracy advantage we observe with

our new LZJD metric, we analyze two theoretical di�erences in

behavior of NCD and LZJD in section 5. Our conclusions are then

presented in section 6.

2 NORMALIZED COMPRESSION DISTANCE
The inspiration for the NCD comes from Kolmogorov complexity.

Given some arbitrary sequence x and its length |x |, the Kolmogorov

complexity function K(x) will return the length of the shortest pos-

sible program that outputs x as a result of its execution. Similarly,

the conditional Kolmogorov complexity function K(x |y)will return

the length of the shortest possible program that outputs x , given

y as an input to the function that it may use. Intuitively, the Kol-

mogorov functions capture notions of compression, entropy, and

their relationships. The closer |x | and K(x) are the more random

or uncompressable the sequence x must be. Using these notions,

Li et al. [19] de�ne the Normalized Information Distance (NID) (1),

which returns a distance in the range [0, 1].

NID(x ,y) = max (K(x |y),K(y |x))
max (K(x),K(y)) (1)

Intuitively, given two items that are near duplicates, the second

can be represented as a small set of changes from the �rst, which

would result in a small increase in compressed size (and thus a

small distance). Given two inputs that are purely random, and

do not have any overlap, one gives us no information about the

other. Thus the sizes will remain large, and the numerator will

become equal to the denominator (as K(x |y) = K(x) if y gives no

information about x), resulting in the maximal distance. The NID

is a valid distance metric, in the sense that for any possible inputs

x ,y, and z, the following properties of metrics hold:

• d(x ,y) = 0 if and only if x = y. (identity)

• d(x ,y) = d(y,x) (symmetry)

• d(x ,y) + d(y, z) ≥ d(x , z) (triangle inequality)

Unfortunately, since K(·) and K(·|·) are uncomputable functions,

the NID cannot be used in practice. Given this issue, Li et al. [19]

proposed to approximate the function K(·) using any compression

algorithm. De�ning a new function C(x), which returns the com-

pressed length of x in bytes, we get the NCD distance (2), where

C(xy) indicates the compressed size of sequences x and y concate-

nated together.

NCD(x ,y) = C (xy) −min (C(x),C(y))
max (C(x),C(y)) (2)

The quality of this approximation to NID depends on the com-

pression algorithm used for C(·), where a better compression al-

gorithm will result in better accuracy. For malware analysis, it

has generally been found that LZMA [20] and similar compression

algorithms tend to work best [2, 5]. Regardless of the compression

algorithm used, in practice the NCD is not a true distance metric,

since from time to time all three properties listed above may be

violated. Li et al. [19] realized this and also introduced the con-

cept of a normal compressor, and showed that the NCD will behave

like a distance metric so long as the compressor used maintains

certain normalcy properties. These properties are not intrinsic

to any compression algorithm, but are a function of the compres-

sion algorithm and the input given. For this reason, many have

found that empirically the normal compressor properties do not

hold in practice [5, 9]. It is even the case that NCD often returns

values larger than the theoretical maximum distance of one [10]. A

compounding issue is that the NCD is computationally expensive.

While the values C(x) and C(y) can be computed once for each

datapoint, the conjoined term C(xy) cannot be pre-computed, and

is the most computationally demanding of the terms in (2). This

has made it di�cult to apply NCD to larger datasets.

Despite these issues NCD has been quite popular for many do-

mains, including classi�cation and clustering of EEG signals, pose

estimation, text datasets, and more [16, 17]. The use of compres-

sion distances also has strong ties to Machine Learning, where

compression distances can be seen as a new feature space[25] and

the concept of compression can be used for learning bounds[13, 14].

Numerous works have proposed modi�cations of the terms in NCD,

but it has been found that most of these changes will result in

equivalent orderings and only change the normalizing terms [25].

Given the wide success of NCD, we seek to address its major issues

of computational overhead and lack of metric properties.

3 LEMPEL-ZIV JACCARD DISTANCE
Inspired by the use of compression in NCD, we develop a new dis-

tance metric called the Lempel-Ziv Jaccard Distance (LZJD). We

base this new distance on two insights about the use of NCD, which

allow us to simplify the process as a whole. First, that the most

accurate compression algorithms for NCD, such as LZMA, make

use of the Lempel-Ziv (LZ) technique for creating a compression

dictionary of previously seen sub-sequences[31, 32]. Second, that

we do not care about the actual compressed output of any compres-

sion algorithm when computing NCD. Compression is merely a

means to the end goal of measuring similarity or distance between

two objects.

This second insight allows us to ignore the many technical details

of LZMA used to e�ciently represent the encoding, bookkeeping

needed for decoding, block sizes for e�ciency, and any additional

steps required for e�ective compression. Instead we can focus on

just the act of obtaining a LZ dictionary. Thus we use a simpli�ed

version of the LZ77 [31] to get a set of sub-sequences, as shown

in Algorithm 1, which de�nes the LZSet method to convert a byte

sequence into a set of byte sub-sequences. This method works

by building a set of previously seen sequences. The set starts out

empty, and a pointer starts at the beginning of the �le looking

for a sub-sequence of length one. If the pointer is looking at a



Algorithm 1 Simpli�ed Lempel-Ziv Set

1: procedure LZSet(Byte sequence b)

2: s ← ∅
3: start ← 0

4: end ← 1

5: while end < |b | do
6: bs ← b[start : end]
7: if bs < s then
8: s ← s ∪ {bs }
9: start ← end

10: end if
11: end ← end + 1
12: end while
13: return s
14: end procedure

sub-sequence that has been seen before, we leave it in place and

increase the desired sub-sequence length by one. If the pointer

is at a sub-sequence that has not been seen before, it is added to

the set. Then the pointer is moved to the next position after the

sub-sequence, and the desired sub-sequence length reset to one.

Once we have the LZSet method, we can turn any sequence of

bytes into a set of sub-sequences. The similarity between two sets

can then be measured using the familiar Jaccard similarity,

J (A,B) = |A ∩ B ||A ∪ B | (3)

The Jaccard similarity is the cardinality of the intersection of

two sets divided by the cardinality of their union (3). The Jaccard

Distance, which is a valid distance metric, is simply D J (A,B) =
1 − J (A,B). We can then combine the Jaccard similarity and the

LZSet algorithm to produce our new Lempel-Ziv Jaccard Distance

(LZJD),

LZJD(x ,y) = 1 − J (LZSet(x), LZSet(y)) (4)

Since the LZSet method consistently maps any byte sequence to

a set, and the Jaccard distance is a valid distance metric, then the

LZJD is also a valid metric. Because we are unconcerned with the

extra work of performing full compression, the LZJD turns out to

be faster to compute in practice.

3.1 Storage and Compute E�cient LZJD via
Min Hashing

The set of sub-sequences extracted by LZJD requires memory pro-

portional to the size of the input strings. This makes it impractical

to store all the resulting sets in memory for every data point, forc-

ing us to do redundant computations. While this can be partially

alleviated through caching schemes, we can instead exploit one

of many approximation algorithms for the Jaccard similarity. In

this way we can compute an approximate LZJD with high accuracy,

throughput, and minimal memory usage. In particular, we use min-

hashing to create compact representations of the input strings, and

the same min-hashing lets us approximate the distances between

sets of sub-sequences.

Let h(a) be a hash function that returns an integer given some

object a, and hmin (A) = mina∈A h(a) returns the minimum hash

value over every object a in a set A. Then it is known that [6]

P(hmin (A) = hmin (B)) = J (A,B)
That is, for two sets A and B, the probability that the min hash

value of A and B are the same is equal to the Jaccard similarity

of the sets. This observation could be used to approximate the

Jaccard similarity by collecting multiple hash values for di�erent

hash functions. Instead, we can be more computationally e�cient

by selecting the minimum k hashes from the set [7]. Using hnmin (A)
for the n’th smallest hash value from the set A, we then get

J (A,B) ≈ J ©«
k⋃
j=1

h
j
min (A),

k⋃
j=1

h
j
min (B)

ª®¬
We can use this approximation to reduce time and memory

requirements for computing LZJD. The error of this approximation

is probabilistically bounded above by O(1/
√
k) if the minimum k

hash values are used. We can then use k = 1024 to reduce the

approximation error to around 3%. Each dictionary d (derived from

LZSet applied to some input string) is mapped to a new dictionary

dk which contains the k smallest hash values. This means that any

string we wish to use as input to LZJD will take on the order of

4KB to store in memory, which is much smaller than the multiple

megabytes binary �les may require. This gives us the following

procedure for a faster and more memory e�cient approximation:

(1) Convert byte sequence Bi to sub-sequence set Ci using

Algorithm 1

(2) ConvertCi to a set of integers, via some hash function h(·)
(3) Obtain integer setCki by keeping only the k smallest values

from the set

(4) Approximate LZJD(Bi , Bj ) as ≈ 1 − J (Cki ,C
k
j )

We will denote our min-hash approximation of LZJD as LZJDh .

By reducing the memory use to just a �xed 4KB, we are able to

greatly reduce both the storage and compute requirements for

our approach. We also note that since LZJD is a metric, so is the

approximation LZJDh . To see this, note that the min-hash set

used is a �xed function converting one set into another set. The

approximate distance is then computed using the Jaccard similarity,

which is a metric, and so LZJDh is also a metric.

4 EXPERIMENTS
Having de�ned the LZJD distance, we describe a number of experi-

ments which show that LZJD is competitive with NCD in terms of

quality of results, while having superior run-time characteristics.

In all experiments we will apply NCD and LZJD to the raw byte

contents of a binary as our features, unless stated otherwise. We

will generally use the k-Nearest Neighbor algorithm (k-NN) [11] in

these experiments to perform classi�cation. This is a well-known

algorithm that is intuitive, and a good �t for our distance metrics.

Given a query point q, we �nd the k training data-points closest

to q. The label we assign the query is then the majority label for

the k nearest neighbors, where ties are broken arbitrarily. For all

experiments, we do not perform a search for the most accurate

value of k as it is time intensive to run experiments for NCD and



normal LZJD, and results were generally insensitive to changes in

k .

For our NCD implementation, we use the XZ compression algo-

rithm. XZ is a container for LZMA and LZMA2 compression, and

has an additional compression �lter speci�cally for binary code

data. This makes it an especially good �t for our goal of malware

classi�cation from raw binaries. The per-�le compression sizes

were cached after �rst use to avoid redundant computation.

We implemented LZJD and LZJDh in Java with JSAT[21], without

any signi�cant attempt at performance optimization. For comput-

ing the min-hash sets we used the MD5 hash function. All results

were run on a single machine with 64 CPU cores and 2TB of RAM,

and we report the time taken as the time spent on all CPU cores

added together (which is reported by the unix time command). This

form of measurement is valid for this task as the k-NN and dis-

tance computations can be done independently, meaning there is

minimal communication overhead. This is done in part to avoid

di�erences in load balancing, where di�ering �le size lengths and

compressibility can result in uneven distribution of workloads. In

terms of performance comparisons, our setup gives the maximal

advantage to NCD (which is using an optimized implementation

of XZ compression), where our LZJD implementation is naive and

unoptimized. LZJD’s run-time could be further enhanced by using

a disk based cache of the LZSet instead of re-computing for each

distance comparison. Both LZJD and LZJDh could enjoy further

speedup by the use of a rolling hash function to compute the LZSet.

Given the time intensive nature of our experiments, we tested NCD

and LZJD on random sub-samples of each dataset. For each method,

the maximum subset size was determined by a one week runtime

limit on individual runs. When a dataset was sub-sampled, both the

training and testing data were sub-sampled. Otherwise the test-set

sizes alone would exceed our runtime capacities.

4.1 Microsoft Malware Detection
We �rst demonstrate the performance of LZJD with the task of

malware detection, where we try to distinguish between benign

and malicious binaries. While most prior results have restricted the

use of NCD to data-sets of 2000 or less samples, we use the much

larger data from [22], which divides the data into two di�erent

training sets (Group A and Group B) and three di�erent testing

sets (Group A, B, and Open Malware). The data in each group is

collected in a di�erent manner from a di�erent source, and is used

to better estimate the generalization error by minimizing common

biases between train and test sets. We will use the Group B training

set, as [22] found that models performed best when trained on that

group. We will report run-times when using Group B training data,

and evaluating against all 3 test sets. The Group B training set has

400,000 unique �les, half benign and half malicious. Combined with

the over 220,000 �les in the test sets this represents 275.5GB of data.

Our results represent a data-set two orders of magnitude larger

than what NCD has ever, to our knowledge, been used with before.

For this experiment we use balanced accuracy [8] and Area

Under the Curve (AUC) to evaluate on the test sets for this task.

For k-NN, we choose k = 9 over smaller values of k so that we can

more accurately measure the AUC, which is not well de�ned for

k = 1.

In Figure 1, we can see the balanced accuracy of all three dis-

tances run on training subsamplings of varying sizes. We use the

balanced accuracy where each class receives equal total weight in

the calculation, to ease comparisons across datasets. As can be seen,

the LZJD metric has higher accuracy than NCD across all sample

sizes and comparable AUC. For the Group B test set (Figure 1b), we

can see that all distances have increasing accuracy as the sample

size increases. This is to be expected, as k-NN theory indicates

that the error rate approaches the Bayes optimal error rate as the

training set size increases. While the accuracy of NCD closes the

gap with LZJD with larger samples, its computational cost means

it cannot reach the same accuracies as LZJDh . The Group A test

set (Figure 1a) does not have quite the same behavior, since its data

comes from a di�erent distribution, but we still see the same overall

trend: LZJD obtains better accuracies and LZJDh allows us to use

more data.

We point out that LZJDh has no signi�cant impact on the classi-

�cation accuracy of our approach. In terms of AUC, LZJD and NCD

tend to go back and forth, with relatively minor di�erences. The

exception being early on the Group B test set, where NCD performs

much worse than LZJD in all respects.

Table 1. Balanced accuracy results for distance metrics on all three
test sets. Results given for using 2% of training (and test) data and
100% of data. Includes best results from [22] in last column

2% of data 100% of data

Test Set NCD LZJD LZJDh LZJDh Byte 6-grams

Group A 64.9 74.0 74.1 77.4 87.3

Group B 76.8 81.8 79.3 85.9 94.5

Open Malware 21.9 64.1 59.5 67.8 81.1

The accuracies at 2% and 100% of the data from Figure 1 are

shown in Table 1. In every case LZJD performs better than NCD, and

performance improves as more data is used. While the byte n-gram

approach used in previous work [22] performs better than LZJD,

LZJD allows a wider variety of uses in clustering, similarity search

and requires less e�ort to apply
1
. Because LZJD is a distance metric,

we can apply it to various existing techniques, but such questions

are beyond the scope of this paper. The increased practicality will

also allow investigating improved classi�cation methods, such as

Radial Basis Function networks, that were too expensive with NCD.

The total single-threaded run-time for this evaluation is pre-

sented in Figure 2, again as a function of how much of the corpus

was used. At 0.1% of the corpus, LZJDh is 216 times faster than

NCD to perform the classi�cation. It is also clear that LZJDh has a

lower slope than NCD, and by 2% of the corpus, LZJDh was 3,572

times faster than NCD. This shows that LZJDh is several orders of

magnitude faster than NCD, making it practical for larger datasets.

In addition, creating the min-hash set of the data took 90.2% of

the computational time. For a system that will classify new items

1
The byte n-graming approach is computationally demanding. Using all 64-cores

of the same server it required multiple days of out-of-core processing for the same

data, and needed over 3TB of scratch space. This makes scaling problematic, and its

software took 6 months of engineering to be this e�cient. In contrast, LZJDh was

initially written in a few hours.
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Figure 1. Balanced Accuracy and AUC on the y axis, presented for the Group A and Group B test datasets. The same legend applies to each plot.
Solid lines are for balanced accuracy, dashed lines are for AUC. Values with a smaller fraction of training data had higher variance, but runs
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Figure 2. Time taken to perform 9-NN classi�cation on Group A, B,
and Open Malware test sets with the Group B training set.

against an existing database, the min-hashing is a one-time cost,

making deployment of LZJDh more realistic as well.

4.2 Malware Family Classi�cation
In our second set of experiments we consider malware family classi-

�cation, where we are given known malware and need to determine

what family of malware a sample belongs to. We will evaluate this

with two data sets, one for Windows binaries and one for Android

applications. For each dataset the distribution of families is skewed,

so we use k=1 for k-NN. Larger values of k tended to reduce the

resulting accuracy since most samples belong to only a small set

of malware families. Each dataset is evaluated using 10-fold cross

validation with balanced accuracy as the target metric. Due to the

computational time required for NCD and LZJD, we only evaluate

them on 10% of each dataset. For LZJDh we evaluate on 10% and

100% of each dataset, since it is much faster than NCD or LZJD.

Our Windows dataset was provided by Microsoft for a 2015 Kag-

gle competition [1]. This dataset contains 9 malware families in

10,868 training �les at 50.8GB in size. We evaluate two di�erent fea-

ture options that were provided. First, similar to subsection 4.1, we

use the raw byte contents of the �les
2

as the inputs to our distance

metrics, and refer to it as "Kaggle Bytes". Microsoft also provided

the disassembled versions of each �le using industry standard soft-

ware. These disassembled versions contain ASCII representations

of not only the assembly from binary code (.text sections), but ASCII

representations of all other sections of the binary as well. This in-

cludes additional human-readable annotations when possible (such

as resolving import names and function signatures). We include the

raw disassembled versions of each �le as another input feature type

to show that LZJD is not speci�c to binary data. The disassembled

version of the dataset takes up 147GB of disk space, and we refer

to it as "Kaggle ASM".

For our Android APK malware we use the Drebin dataset [3], but

remove any malware family that had less than 40 samples
3
. This

leaves us with 20 malware families and 4664 �les with a collective

size of 6.4 GB. Android programs are referred to as Android applica-
tion packages (APKs). APKs are in fact zip �les, which may include

some level of compression, of the Dalvik bytecode and other appli-

cation resources. We note that the default Android toolkit often

2
Microsoft provided the raw contents, but with the �le header removed so that one

could not accidentally run the malware samples. Since these headers are not recover-

able, we used these header-less versions.

3
Many of the malware families had less samples than cross-validation folds, which

would have made evaluation di�cult



applies little or no compression when creating the zip �les. Com-

pressed input can be a challenge for NCD, since it depends on the

input objects being (even more) compressible in order to work. For

this reason we evaluate the dataset in two ways, one with the raw

APK �les and one with the APKs uncompressed and its contents

combined into a single tar archive (i.e., no compression). We refer

to these versions as "Drebin APK" and "Drebin TAR" respectively.

Drebin TAR is 8.6 GB uncompressed. We note that three of the �les

could not be unzipped due to a malformed APK, and these three

�les were removed.

Table 2. Balanced accuracy results on each data and feature set. Eval-
uated with 10-fold CV, standard deviation in parenthesis.

10% of data 100% of data

Dataset NCD (%) LZJD (%) LZJDh (%) LZJDh (%)

Kaggle Bytes 58.1 (3.6) 98.2 (1.2) 94.4 (5.0) 97.6 (1.5)

Kaggle ASM 71.8 (6.1) 92.9 (4.6) 95.6 (4.1) 97.1 (2.0)

Drebin APK 67.2 (7.8) 81.4 (5.5) 80.5 (5.8) 80.8 (2.6)

Drebin TAR 81.0 (6.5) 85.0 (6.6) 82.0 (7.0) 87.2 (2.8)

The results of running 1-NN on these datasets are given in Ta-

ble 2, where we can see two major trends. First, the NCD distance

performs signi�cantly worse than both variants of LZJD. Second,

LZJDh typically performs slightly worse than LZJD when using

only 10% of the data.

The performance di�erence between LZJD and LZJDh is always

within a standard deviation, with two cases where LZJD performs

better and two where it performs worse. Additionally, being able to

use 100% of the data with LZJDh naturally reduces the variance of

the error. We suspect the slightly reduced performance of LZJDh is

caused by errors when the nearest neighbor with the correct label,

and a second nearest neighbor with an incorrect label, are almost

equidistant from the query. Because some of the malware families in

each corpus are related to each other, this is a source of errors even

when not using the approximated distances. This situation could

easily change the nearest neighbor due to the 3% approximation

error of LZJDh , which can cause a signi�cant change in output since

we only consider the nearest neighbor. When comparing accuracy

to NCD, we will refer to the worse accuracy result between LZJD

and LZJDh as just "LZJD" for brevity.

For the Kaggle data set NCD’s performance using the raw bi-

naries and assembly is better than the random guessing rate of

11%, but is still 21 to 36 whole percentage points behind LZJD. This

dramatic drop in accuracy would be an indication that the com-

pression is simply not e�ective when trying to distinguish the �ner

details between malware families. We see evidence of this when

examining the classi�cation errors made by NCD. For example,

on the Kaggle Bytes dataset, NCD could not distinguish between

Kelihos version 3 and version 1, which resulted in errors both ways.

For Kaggle ASM such errors were not as prevalent, but NCD still

had di�culty with the malware families that had few samples be-

ing miss-classi�ed as other, larger, families. We note that while

NCD gains over 13 percentage points by using the more verbose

disassembled Kaggle dataset, LZJD is relatively una�ected by the

change, especially when run on 100% of the data. This suggests that

NCD is more sensitive to the data’s representation than desired,

and that LZJD possesses a greater invariance to the data encoding.

On the Drebin datasets, NCD performs better, but still trails LZJD

in accuracy. When tested with the uncompressed Drebin TAR data,

NCD is within a percentage point of LZJD’s accuracy. But NCD is

over 6 points behind when we consider that we can use all of the

data for LZJDh . Consistent with prior results, moving from Drebin

TAR to the compressed Drebin APK causes the performance of NCD

to trail LZJD by nearly 14 percentage points, making it considerably

worse than LZJD in all cases. This also provides additional evidence

that LZJD is more robust in the face of higher entropy data, as

the drop in accuracy from Drebin TAR to Drebin APK is not as

dramatic, losing only 6.4 points when the whole dataset is used.

Table 3. Total evaluation time for each method 10-fold CV. Time
presented in seconds.

10% of data 100% of data

Dataset NCD LZJD LZJDh LZJDh

Kaggle Bytes 1.20 × 107 2.95 × 106 1.22 × 103 1.73 × 104
Kaggle ASM 2.83 × 107 1.16 × 107 4.94 × 103 4.85 × 104
Drebin APK 1.79 × 105 4.22 × 105 7.41 × 102 7.17 × 103
Drebin TAR 3.59 × 105 4.41 × 105 8.33 × 102 7.65 × 103

In Table 3 the CPU time on each dataset is given in seconds.

Our un-optimized implementation of LZJD is sometimes faster and

sometimes slower than NCD, depending on the dataset. But our

ability to apply min-hashing makes LZJDh orders of magnitude

faster. In every case, LZJDh can perform 10 fold CV on all the data

faster than NCD can be applied to one tenth the amount of data.

The speedup of LZJDh ranges from 241 to 9,836 times that of NCD,

nearly four orders of magnitude, with the larger speedups being

obtained on the larger Kaggle datasets. This runtime improvement

greatly extends the utility of LZJD over NCD, representing the

di�erence between 327 CPU days for the Kaggle ASM dataset to

under two CPU hours.

5 DIFFERENCES BETWEEN NCD AND LZJD
We have shown that the LZJD distance, for byte-based malware

classi�cation, has superior accuracy to NCD. Combined with min-

hashing, it is also orders of magnitude faster while retaining the

desirable properties of being a metric. Super�cially, it may seem

surprising that the NCD and LZJD have meaningfully di�erent

results, given that in practice they both use the Lempel-Ziv com-

pression scheme as a core component. Here we present two ways

in which the behavior of these two distances are di�erent.

5.1 High Entropy Files
One important di�erence between LZJD and NCD is the value

returned when faced with a compressed, encrypted or otherwise

random looking �le. Such processing results in a high byte entropy,

and is a common scenario for malware classi�cation. Malware

will often encrypt or compress portions of itself to obfuscate its

true intentions and reduce its footprint to avoid detection. This

is referred to as packing, and over 90% of Microsoft malware uses



some form of packing [30]. We will �rst discuss how NCD and

LZJD di�er in this scenario, and then explain how the impact can

be seen on our results.

When NCD encounters high entropy regions that cannot be

compressed, these areas will become additive constants to the com-

pressed size of each �le, and neither �le will have information that

can help compress the high entropy areas of the other (assuming

the high entropy regions in the two �les are not near duplicates).

This will result in an increase in their distance. When two di�erent

�les cannot be compressed, the maximal possible distance (of 1.0)

is returned. We emphasize that because a single high entropy �le

will not help compress or be further compressed by any other �le

(including ones that are not compressed), high entropy �les will

become maximally far and equidistant from all other data points in

practice.

For LZJD, we build the LZ dictionary which, in the presence

of non-compressible randomness, will begin collecting all possi-

ble shortest length sequences into the set. This is because each

sequence is equally likely to be observed, and corresponds to the

worst case scenario for LZ compression. This will generate a dic-

tionary set with a maximal number of elements. Since we use the

Jaccard distance between these sets, two di�erent �les composed

of random sequences will likely have a near-zero distance from

each other, which is the opposite behavior of NCD. In contrast,

when computing the distance between a high and low entropy �le,

LZJD’s distance will become larger (but not maximal), the value

of which will depend on the ratio of small to large sub-sequences

in the non-compressed sequence. The lower entropy a sequence

is, the easier it is to accumulate longer sub-strings, thus increasing

the distance to higher entropy sequences. Thus, LZJD will tend to

compute very small distances between two compressed �les, but

not between a compressed �le and a non-compressed �le.
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Figure 3. Distribution of �le entropy for datapoints that were mis-
classi�ed (solid lines) in the test set, and benign vs malicious sub-
sets (dotted lines). Results with respect to all three test sets from
subsection 4.1.

The impact of these entropy-related e�ects is clearly evidenced

by our results with the Android Drebin malware, where the only

di�erence between Drebin TAR and Drebin APK is compression (at

a ratio of 1.34). NCD has a nearly 14 point drop in performance on

the compressed Drebin APK dataset compared to the TAR version.

This is a signi�cant performance gap for what amounts to two

versions of the same data. LZJD is considerably more robust to the

change, with only a 2-6 point drop in performance. Because the

only di�erence between these two versions is compression, we can

attribute the better performance of LZJD to the manner in which it

handles higher entropy (caused by compression) data.

The better performance of LZJD can also be seen by looking at

the entropy of �les which are misclassi�ed, as shown in Figure 3 for

the malware detection results from subsection 4.1. The Probability

Density Function (PDF)
4

is shown for the test data, and compared

against the PDF of the misclassi�ed test data for each metric. Re-

call that the PDF is normalized to integrate to one, and so we are

comparing the shapes of PDF curves, not their magnitude.

Since NCD has di�culty with high entropy �les, it is more likely

to misclassify those �les as compared to �les of lower entropy. This

results in the highest proportion of errors near the rightmost end of

the distribution. The PDF for NCD thus also increases with entropy,

as NCD(a,b) approaches 1 when either a or b are of su�ciently high

entropy.

Because many, if not most, high entropy binaries (≥ 7 entropy)

are malicious, it is easier for LZJD to properly classify many of these

�les. Under LZJD such high entropy �les will have a small distance

from each other, but a larger distance compared to the lower entropy

�les. The majority of neighbors will then be malicious based on

the population density, and give the label of malicious (which is

usually correct). Errors will then come from high entropy benign

�les, which can be seen in Figure 3. The test PDF errors for LZJDh
in the ≥ 6 entropy range matches the shape of the benign data

(dashed green line), indicating that LZJD’s errors with high entropy

�les are failures in separating the minority of benign packed �les.

The behavior of LZJD in this case results in improved accuracy,

but could be seen in both a positive and negative light. On one

hand, two �les that are comprised of di�erent random bytes are

intrinsically di�erent and have no overlapping similarity — thus

making it appropriate that they receive the maximal possible dis-

tances from each other. At the same time, both �les are similar in

the fact that they appear random and incompressible, making it ap-

propriate to place them closer together distance wise. While there

may be other datasets and domains where the way LZJD handles

high entropy sequences is undesirable, it has clearly resulted in

improved accuracy for malware classi�cation and provides more

meaningful nearest neighbors compared to NCD.

5.2 Sensitivity to Sequence Length Repetition
While the behavior of LZJD with high entropy sequences can be

argued in either direction, there is one way in which the theoretical

behavior of LZJD does not match our intuition of how a distance

metric should behave. This is when we are given two sequences

where one sequence is a repetition of the other. We have no reason

to suspect this scenario occurs in our data or constitutes a signi�cant

impact on our data and results, but �nd the exercise informative

4
PDF is estimated with a Kernel Density Estimator using a Gaussian kernel, bandwidth

selected using Silverman’s method.



to the di�erences between NCD and LZJD. NCD has the desired

theoretical behavior in this scenario, as we will show below, but

does not deliver upon this behavior in practice. LZJD lands in the

middle ground, where its behavior is not what we would desire

but is better than NCD in practice. Devising ways to rectify this

theoretical shortcoming may be a way to improve LZJD as a whole

in future work.

Let us assume we have a sequence of bytes α , and represent

the duplication of a sequence n times as α (n), where α (1) = α .

Intuitively, we would desire the distance between α (n) and α to be

small, as they are intrinsically similar. There is e�ectively no true

di�erence in content, only in repetition of the same data.

Using the theoretical Kolmogorov complexity K(·), NCD does

match this intuition. We would expect that ∀n > 1, NCD(α ,α (n)) <
ϵ . This is because, for most cases, K(α (n)) ≈ K(α) + log(n), as

we can generally represent the duplication of the string α with

a minimal amount of additional programming that repeats the

original sequence, and simply need to know how many times to

repeat that sequence (the value of which takes a logarithmic number

of bits to represent)
5
. Then applying this to NCD we expect to get

NCD

(
α ,α (n)

)
=

K(αα (n)) −min(K(α),K(α (n)))
max(K(α),K(α (n)))

=
K(α (n+1)) − K(α)

K(α (n))

≈ K(α) + log(n + 1) − K(α)
K(α) + log(n)

=
log(n + 1)

K(α) + log(n)

It is easy to see that limK (α )→∞
log(n+1)

K (α )+log(n) = 0. Thus, the NCD

between two �les that are of widely di�erent lengths, that di�er

only in how many times the same sequence α is repeated, should

result in a small distance. The distance will increase slowly as the

repetition n increases, due to the log terms. This behavior matches

our intuition that α and α (n) should have a small distance and are

intrinsically similar.

This is the result with the theoretical Kolmogorov complexity

K(·). In practice, we have to use some compression algorithm C(·),
in which case for large inputs α ,C(α (n)) ≈ nC(α). This is due to the

fact that compression algorithms (like LZMA) usually use a window

size for compression, and for larger sequences the window size will

be smaller than the length of the �les. By the time the window

reaches into the second sequence, information from the �rst is

mostly out of the window. This means little information about one

sequence is used for the compression of the second [5]. Using this

we would instead get the result NCD

(
α ,α (n)

)
≈ (n+1)C(α )−C(α )nC(α ) =

1. This is the opposite of the theoretical behavior we would expect.

We have now shown that NCD has a theoretically desirable be-

havior, but in practice has the worst possible behavior. We now

show that LZJD’s behavior (which does not have a disconnect be-

tween theoretical and real performance) falls between these two

5
This is not true in all cases, so we avoid absolute statements. But for most �les this

will be approximately correct

opposing ends. It does not match our intuition for what good be-

havior is, but avoids marking sequences as equidistantly maximally

far away. By the de�nition used in Algorithm 1, it is easy to see that

the dictionary is monotonically increasing in size, irrespective of

the amount of repetition in the source sequence. For a minimal in-

crease in the dictionary size (and thus, minimal change in distance),

we want a sequence of all the same character. This means the size

of the next sub-string added to the dictionary will always increase

by 1. If the length of a string α is |α |, and k is the minimal number

of items added to a set, we get |α | = ∑k
i=1 i . Solving for k reveals

that we get at least
1

2
(
√
8|α | + 1 − 1) sub-strings. Applying this to

the Jaccard distance we obtain a lower bound on the distance

LZJD

(
α ,α (n)

)
= 1 − |LZSet(α) ∩ LZSet(α (n))|

|LZSet(α) ∪ LZSet(α (n))|

= 1 − |LZSet(α)|
|LZSet(α (n))|

≥ 1 −
√
8|α | + 1 − 1√
8n |α | + 1 − 1

By taking the limit lim |α |→∞ 1−
√
8 |α |+1−1√
8n |α |+1−1

= 1− 1√
n

, we see that

the distance will start o� near 0.3 for just one repetition, and grow

relatively quickly as the repetition is increased. Repeating this with

assumptions on a faster growth rate of the dictionary size increases

the value of the limit and increase the distance between α (n) and α .

This is in many ways counter to our intuition that α and α (n)

are intrinsically similar, and so should receive a small distance. The

LZJD distance also grows more rapidly with repetition than it does

in the case of NCD. This is worse than NCD in theory, but better in

practice sinceC(·) is often not a good enough approximation ofK(·)
when dealing with large sequences like binaries. More succinctly,

with regards to this scenario, LZJD is worse than NCD in theory, but

better than NCD in practice. This is because the theoretical behavior

of NCD is unobtainable. Fortunately the scenario of duplicated

sequences does not seem to occur in practice, but the results are

informative to the behaviors of these distances. Understanding and

rectifying this theoretical weakness this may allow us to devise

improvements to LZJD in future work.

6 CONCLUSIONS AND FUTUREWORK
We have introduced the novel LZJD distance as an alternative to

NCD when dealing with large byte sequences, particularly for mal-

ware classi�cation. LZJD has comparable or better accuracy than

NCD, when using raw bytes for Microsoft Windows �les and An-

droid applications, ASCII disassembly, and moderately compressed

Android APKs. We have also shown two theoretical di�erences

in behavior between these distances, despite similar inspiration.

Our new distance allows the use of min-hashing to obtain speed

improvements of up to four orders of magnitude. This has allowed

us to apply LZJD to datasets orders of magnitude larger than were

previously possible with NCD. This comes with improved accu-

racy compared to NCD, yet retains the desirable distance metric

properties that NCD lacks.



In this work we have focused primarily on computing distances

between raw byte sequences for malware classi�cation. In future

work, the di�erences between NCD and LZJD should be explored

in other domains. While they share a critical component of using

LZ compression, it is not obvious that LZJD will be superior in

all domains. Similarly, our sequences are fairly long, which is

an area of weakness of NCD. The di�erences in performance and

accuracy may be smaller for tasks involving shorter sequences.

Finally, we note that a bene�t of our approach is that it can exploit

the rich existing literature in approximating the Jaccard similarity

between sets. Combining our work with other approximations

such as Locality-Sensitive-Hashing [12], and balancing a trade-o�

between approximation and exact computation, may enable even

more applications of LZJD that are not possible for NCD. That

LZJD is a true distance, and is fast to compute, also enables new

follow up research that would not have been practical for NCD.

This includes evaluations in clustering, large scale similarity search,

visualization, and other classi�cation algorithms that require only

a distance metric between points.
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