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ABSTRACT
N-grams have long been used as features for classification problems,
and their distribution often allows selection of the top-k occurring
n-grams as a reliable first-pass to feature selection. However, this
top-k selection can be a performance bottleneck, especially when
dealing with massive item sets and corpora. In this work we intro-
duce Hash-Grams, an approach to perform top-k feature mining
for classification problems. We show that the Hash-Gram approach
can be up to three orders of magnitude faster than exact top-k se-
lection algorithms. Using a malware corpus of over 2 TB in size, we
show how Hash-Grams retain comparable classification accuracy,
while dramatically reducing computational requirements.
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1 INTRODUCTION
We define a character n-gram as a set of n consecutive characters
that appear in a document. (Word n-grams, defined analogously,
have also been studied, but are not the focus of this paper.) It turns
out that character n-grams have been used in document analysis
for many years [4]. In this paper, we present a faster form of n-
gram analysis, with the goal of improving the speed and accuracy
of malware classification. Byte n-grams have been used in the study
of malicious binaries [8, 14, 17], but we (and others) have noted the
difficulty involved in scaling to larger corpora [12, 13].

There are a number of factors that make n-grams difficult to
scale in the malware classification use-case. We are concerned
with a classification problem where N is exceedingly large, and
the documents in question are represented with binary feature-
vectors x ∈ {0, 1}D indicating the presence of absence of an n-gram.
While one could use other weighting schemes, such as a frequency
distribution of some subset of n-grams, it is often the case that
the pattern of occurring features is more important than feature
magnitude in sparse and high-dimensional spaces [15].

As an example of the scaling problem, let’s assume modest value
of n=4. With byte values in the range 0-255, the number of possible
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n-grams is 2564 or about four billion. To build the binary feature
vector mentioned above for an input file of lengthD, n-grams would
need to be inspected, and a certain bit in the feature vector set
accordingly. Malware specimen n-grams do tend to follow a Zipfian
distribution [13, 18]. Even so, we still have to deal with a massive
“vocabulary” of n-grams that is too large to keep in memory. It
has been found that simply selecting the top-k most frequent n-
grams, which will fit in memory, results in better performance than
a number of other feature selection approaches [13]. For this reason
we seek to solve the top-k selection faster with fixedmemory so that
n-gram based analysis of malware can be scaled to larger corpora.

To tackle this problemwe keep track of the top-k hashed n-grams,
and simply ignore collisions. By using a large amount of RAM, we
can obtain significantly better runtime performance compared to
exact counting of n-grams (which requires out-of-core processing)
or other top-k item mining approaches while also proving that
we will select the top-k hashed n-grams with high probability. We
show empirically that this works well on a large corpus of 2 TB
of compressed data, is orders of magnitude faster than the naive
approach, and show empirically that our approach has 100% recall
of top-k hashes in practice.

1.1 Related Work
There exists two groups of work related to our own based on hash-
ing and frequent item-set mining. In the hashing case, a method
known as the hashing-trick [16] is closely related. The hashing-
trick maps features to indices in a sparse feature vector. This can
be exploited for working with n-grams to avoid having to count
all occurring n-grams and find the most likely ones. It works by
mapping D values for a datum x into a newm dimensional space,
wherem is a hyper parameter. Any feature processing / selection
is normally done before hashing.

While useful, the variance of the hashing trick in our case of
x ∈ {0, 1}D would be σ 2 = O(m−1D2) [16], and thus wouldn’t work
well withoutmakingm >> D. Beyond a computational requirement
in RAM, this makes the learning problem harder due to the curse
of dimensionality [6]. In our approach we will use a large amount
of RAM to select the top-k items, resulting in a more reasonable
dimension size since k << D.

Since not all n-grams can be kept in memory, unless n is quite
small, another approach is to tackle the problem by selecting the
top-k most frequent items from a stream [2, 3, 7, 9]. Such approaches
develop data structures that attempt to adaptively drop infrequent
items as memory becomes constrained and work well under Zip-
fian distributed data. While effective, the added overhead of these
structures makes them slower and difficult to parallelize.
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2 HASH-GRAMMING
Our hash-gramming approach begins with the creation of a large
array of size B to count the number of times each n-gram occurred,
and use a hash function h(·) to map each n-gram to a location in
the array. We then iterate through all documents and increment
counters, using atomic updates to handle parallelism. The entire
procedure is given in Algorithm 1. Once done, we use Quick-select
algorithm to find the top k counts in O(B) time [5]. If relative
ordering is desired, the k selected n-grams can then be sorted.

Algorithm 1 Hash-Graming
Require: Bucket size B, rolling hash function h(·), corpus of S

documents, and desired number of frequent hash-grams k .
1: T← new integer array of size B
2: for all documents x ∈ S do ▷ O(L) for L total n-grams
3: for n-gram д ∈ x do
4: q′ ← h(q) mod B
5: T [q′] ← T [q′] + 1 ▷ Update atomically if using

multiple threads
6: end for
7: end for
8: Tk ← QuickSelet(T ,k) ▷ O(B)
9: Sort Tk ▷ Option if we desired ranking, O(k logk)
10: return Tk in order

Given a rolling hash-function (one which returns the hash of a
moving window) and L total observed n-grams to evaluate, the en-
tire procedure takes O(L+B) time while being simple to implement.
This is asymptotically equivalent to frequent item-set approaches
like the Space Saving algorithm [9], but has significantly less over-
head. To extract features from new data items at test time, one sim-
ply hashes the n-grams and checks if they are in the k kept hashes.

Our implementation is in Java, and so (unless otherwise specified)
we use a value of B = 231 − 18, the largest prime smaller than Java’s
maximum integer value of 231 − 1. Choosing a prime value ensures
a uniform distribution of hash values on line 4. Assuming the data
follows a power-law distribution, as n-grams in executable binaries
usually do, we expect Algorithm 1 to retain all of the hashes (or
“hash-grams”) that belong to the top-k most frequent n-grams —
something we will show in subsection 2.1.

Because there are often more total n-grams than bucket locations
B, the Pigeonhole Principle implies that a number of infrequent n-
grams will collide with the top-k hashes and each other. However
the intrinsic nature of the infrequent n-grams colliding with the
top-k n-grams means that the infrequent ones will have little if any
impact on the accuracy of out results.

2.1 Hash-Gramming under the Zipfian
Distribution

As noted above, it is often the case that the frequency of n-grams
in binaries follows a Zipfian power-law distribution. Under this
assumption, we can show that the Hash-Gram approach is unlikely
to ever miss a top-k n-gram. First, recall that the Zipfian distribu-
tion for an alphabet of N possible items has the Probability Mass
Function (PMF) (1), where x ∈ [1,N ] is the rank of each feature.

f (x ;p,N ) =
{ x−p−1

H (p+1)N

1 ≤ x ≤ n

0 else
(1)

H
(p)
N =

∑N
i=1 1/ip indicates the N ’th harmonic number of the

p’th order. The cumulative distribution function (CDF) F is given by

F (x ;p,N ) =


H (p+1)x

H (p+1)N

1 ≤ x ≤ n

1 x > n
(2)

The set of N possible items corresponds to our n-grams over
some alphabet. Determining if an infrequent n-gram can incorrectly
make it into the top-k hash-grams means that enough n-grams need
to collide into a single bucket Bi (based on the hash function h(·))
such that their count will be greater than one of the true top-k items.
Further, the infrequent n-grams that collide into the same bucket
as a frequent n-gram reinforce the frequent n-gram’s selection.

Let bt indicate the bucket to which a top-k n-gram was hashed,
and let bb be a bucket that has none of the top-k n-grams. To assess
the likelihood of a top-k n-gram’s selection, we need to answer the
question: what is the probability of the difference between the non-
top-k n-grams in buckets bt and bb is larger than the frequency of
the k’th top n-gram? Because we want to compare the frequency
counts, and Freq(x) ∝ f (x ;p,N ), we will use PMF itself as the
relative frequency.

For simplicity we will assume that the infrequent n-grams are
uniformly distributed between all buckets. Given a total of B buck-
ets, each bucket will have L/B infrequent n-grams colliding. We
can also describe the difference between two buckets as a random
variable Z = a − b, where a,b ∼ Freq(Zipfk (x ;p,N )) and a ⊥⊥ b.

We use Zipfk (x ;p,N ) = f (x ;p,N )/(1− F (k ;p,N )) to denote the
truncated distribution that removes the top-k most frequent items
from consideration, as we are assuming that the top-k items have
already been placed in buckets.

P(Z ≥ E[Z ] + t) ≤ Var(Z )
t2

(3)

What is the probability that the sum of L/B samples of Z will be
greater than than the k’th most frequent n-gram? To answer this
question, we can use Chebyshev’s inequality (3)

P
©«
L/B∑
i=1

Zi ≥ t
ª®¬ ≤ 2Var(Freq(Zipfk (p,N )))

(L/B)(tB/L)2

Since we use the PMF’s value as the proportional frequency
under the power-law assumption, we want t = f (k ;p,N ), and the
proportional frequency sum

∑
i Zi to be a small value. With some

calculation we find that the mean truncated frequency is (4)

E[Freq(Zipfk (x ;p,N ))] =
H
(p+1)
N H

(3p+3)
N −

(
H
(2p+2)
N

)2(
H
(p+1)
N

)4 (4)

Which we use to get the variance (5), where ζ (s,a) = ∑∞
i=0 1/(s+

i)a is the Hurwitz Zeta function. Using this we can then derive
Var(Freq(Zipfk (p,N ))), as given in (5).
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−

(
H
(p+1)
k − H (p+1)N

)
· (ζ (3p + 3,k) − ζ (3p + 3,N + 1))+
(ζ (2p + 2,k) − ζ (2p + 2,N + 1))2(

H
(p+1)
N

)2 (
H
(p+1)
k − H (p+1)N

)2 (5)

Which allows us to arrive at the final bound (6)

P
©«
L/B∑
i=1

Zi ≥ f (k ;p,N )ª®¬ ≤
4k2p+2

((
H
(p+1)
k − H (p+1)N

) (
ζ (2p + 2,k) − ζ (2p + 2,N + 1)

)2
+(

H
(p+1)
k − H (p+1)N

) (
ζ (3p + 3,k) − ζ (3p + 3,N + 1)

) )2
B · L

(
H
(p+1)
N

)2 (
H
(p+1)
k − H (p+1)N

)4
(6)

Despite the intimidating look of (6), it tells us that it is quite
unlikely for a top-k hash-gram to not be selected. As an example,
we will consider the case of the n-grammodel from [12], which used
byte 6-grams on over 2 TB of data. Here N = 2566, L ≈ 5 · 105 and
k = 100, 000. The worse case scenario of p = 1 gives us a probability
≤ 5.4 · 10−44. Thus we can expect to obtain the correct top-k hashes
with high probability, even under pessimistic assumptions of the
power-law coefficient p.

3 EXPERIMENTAL RESULTS
Having described our Hash-Gram algorithm, and provided theoret-
ical results backing its use, we move on to demonstrate its utility
in experimental evaluation. First we will show the Hash-Gram’s
speed advantage over pre-existing techniques like the Space-Saving
algorithm on synthetic Zipfian data. Then we will show it obtains
comparable results at classification compared to exact n-gramming
of a corpus for malware detection. The Space-Saving algorithm is
designed for selecting from streams, and guarantees selecting the
true top-k if k << B [1].

3.1 Synthetic Results
For our first test we generate data from the Zipfian distribution
with N = 231 − 1 and p = 1. We then compare how many items-
per-second can be added to the Space-Saving algorithm1 and to our
new Hash-Gram structure as we vary the number of buckets B, and
set the desired number of n-grams k = B/100.

Because the true rank ordering of the Zipfian data is known from
its definition in Equation 1, we are able to easily check that both
approaches have 100% recall for every test case. This empirically
confirms our theoretical results in subsection 2.1.

The timing results can be found in Figure 1, and show the aver-
age number of items-per-second over 10 different runs. When the
bucket size is small and presents little overhead, both approaches
show near-constant runtime for B ∈ [103, 106]. In this range Hash-
Grams are consistently 8.4 times faster than the Space-Saving ap-
proach. However, after this point the Space-Saving algorithm be-
gins to degrade. By B = 262, 144, 000, the Hash-Gram approach has
become 788 times faster compared to the Space-Saving algorithm.
1Code obtained from https://github.com/fzakaria/space-saving
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Figure 1: Plot shows how many items-per-second (y-axis,
higher is better) can be added to the Hash-Gram and Space-
Saving structures when using a single thread. Bucket count
is on the x-axis. Note the log-log scale.

We believe these runtime differences emerge as an artifact of in-
consistent memory access patterns over time for the Space-Saving
approach, compounded by the inconsistent amount of work that
must be done. The Hash-Gram will also have inconsistent memory
accesses, but every access will involve the same number of opera-
tions. That Hash-Grams require only a single object, rather than
multiple indirections, also works to its advantage.
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Figure 2: Speedup of theHash-Gram approach asmore cores
P are used. Tested with synthetic Zipf data using N = 231 − 1,
and varying skweness p.

As mentioned, the Hash-Gram approach is also easy to paral-
lelize — one simply makes the increments to counters using atomic
operations. This allows one to obtain near-linear speedups as more
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cores are used, as shown in Figure 2 on up to P = 6 CPU cores. Here
the Hash-Gram was run for multiple Zipfian distributions with
different skewness p. Speedup is impacted negatively as the skew
increases, as it means the most frequent items will increase their
dominance, and thus increase the contention for atomic updates.

While the Space-Saving algorithm can be parallelized, it is more
involved to do so [1]. In contrast to our Hash-Graming, the Space-
Saving approach has better scalability with P as the skewness in-
creases, as it means less updates to the Space-Saving data structure.

3.2 Malware Detection Results
We’ve now shown on synthetic data that the Hash-Gram approach
has the empirically perfect recall of all top-k hashed n-grams, paral-
lelizes efficiently, and scales better than the Space-Saving approach.
The only remaining question is how accurate are models built from
hash-grams, as opposed to exact top-k n-gram selection? We test
this with a malware detection task, involving the 2 million bina-
ries used for training a malware detection model from [11, 12] and
trained in the same style. We compare to the same highly optimized
n-gram counting code that ran on a cluster of 12 machines for two
weeks. For the Hash-Gram model, we use one machine from the
same cluster to perform n-gram extraction. Then we trained an
Elastic-Net regularized [19] Logistic Regression mode using JSAT
[10].

Table 1: Accuracy, AUC, and compute time for N-Gram and
Hash-Gram features on 2 million Windows executables.

Industry Public
Acc AUC Acc AUC CPU Hours

N-Grams 91.6 97.0 82.6 93.4 32,256
Hash-Grams 91.2 97.1 83.2 92.9 469

The results are presented in Table 1, where we see that the exact
n-gram and hash-gram models have indistinguishable accuracy on
both of the test sets. All scores are close, and fluctuated between
slightly better and worse on individual numbers. The slight changes
in results are not unexpected due to the hash collisions, but is clearly
of equivalent predictive quality to the exact n-gram model.

The Hash-Gram approach was 68.8 times faster in extracting
the top-k features compared to the n-gram approach, allowing us
to reduce a two week job on a cluster down to under three days
on a single node. We note that the code used for the exact n-gram
is highly optimized Java code that has gone through three years
of performance tuning and improvements to scale up the n-gram
processing.

The primary weakness of the Hash-Gram approach is the ability
to inspect the selected n-grams themselves, which have been lost
by the hashing process. This prevents any analysis that requires
inspection of the original n-grams, as was done in [13].

4 CONCLUSION
We have developed Hash-Graming, a new and simple method to
mining frequent n-grams for classification tasks. It is easy to imple-
ment, parallelize, orders of magnitude faster than previous tools,

and comes with provable bounds on obtaining the top-k hashed n-
grams. We’ve shown on a challenging malware detection problem
that models trained on hash-grams retain the predictive perfor-
mance of exact n-grams.
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