
Hash-Grams On Many-Cores and Skewed
Distributions

Edward Raff
Laboratory for Physical Sciences

edraff@lps.umd.edu
Booz Allen Hamilton

raff_edward@bah.com

Mark McLean
Laboratory for Physical Sciences

mrmclea@lps.umd.edu

Abstract—When using n-grams for features, it is often the
case that an expedient and effective first-pass of feature selection
can be performed by picking the top-k most frequent features.
The hash-gram approach was introduced as a method of quickly
performing this feature selection. In this work we identify a
failure case of parallelizing the hash-gram algorithm to a large
number of CPU cores P when the data is highly skewed.
We resolve this issue to produce a hash-gram algorithm with
consistent performance across potential skewness-es and number
of CPU cores, making it practically usable for big-data cases
where more powerful compute is needed.

Index Terms—n-grams, feature selection, parallelization

I. INTRODUCTION

In many predictive applications, keeping track of the exact
input features is not necessary to obtain good predictive
accuracy. Approaches such as the hashing-trick have exploited
this to obtain practical benefits at the cost of losing this direct
understanding of the features.

Recently hash-grams [1] were proposed as one such method
as an alternative to the hashing-trick over n-grams when many
irrelevant features are present. The hash-gram approach was
developed because the number of uninformative features per
malware datum dwarfed the number of relevant ones, making
the hashing-trick ineffective. Hash-grams were also shown to
provide a 10x-788x speedup compared to the classical Space-
Saving algorithm, which is another approach to select the top-k
most frequent items in a stream. These properties make the
hash-gram algorithm attractive for big-data applications which
may be too computationally demanding with prior approaches.

While the hash-gram algorithm was shown to obtain decent
speedups on a machine with 6 CPU cores, it also showed that
the scaling of the hash-gram approach was sensitive to the
skewness of the input distribution. This is problematic when
attempting to use a many-core machine, limiting the scalability
of the approach. By further investigating this relationship, we
show that the hash-gram algorithm’s sensitivity to data skew
prevents it from scaling to larger numbers of CPU cores, and
can even cause performance regressions as the number of CPUs
P continues to increase.

To make hash-grams relevant to big-data applications where
processing with a larger number of CPUs P is necessary,
we introduce a simple modification that practically eliminates
the performance sensitivity with respect to data skew. This is

achieved introducing a thread local write-buffer for memory
access, when the write-buffer is normally a technique for disk
IO. We show that significant gains in scalability are achieved
on a machine with up to 80 CPU cores.

The remainder of our paper is organized as follows. First
we will discuss the alternative approaches to the hash-gram
algorithm in section II. In section III we will discussed the hash-
gram approach and show how it can fail to achieve meaningful
speedups depending on the data skewness in. Then we will
detail in section IV our write-buffer approach, and analyze how
it should remediate the scaling issue with high confidence. Then
we will show empirical results in section V that our improved
hash-gram with write buffer provides consistent speedups across
a range of potential skewness, out-performs the Space-Saving
algorithm for parallel computation, and reduces runtime on
a real-world malware dataset. Finally, we will conclude in
section VII.

II. RELATED WORK

The most directly related approach to hash-grams is a method
known as the hashing-trick [2], [3]. The hashing-trick maps
features to indices in a sparse feature vector, and the index
is selected via a hash-function of the input feature. Once the
index is selected, the index is incremented (or decremented,
depending on the value returned by the hash) by the original
coefficient. Because the index of every item is determined by
the hash value, no memory is needed to keep a map from
tokens to index.

The usefulness of the hashing-trick is dependent on selecting
a target feature space size D′, such that most values will
remain zero and collisions will be infrequent. However, the
hash-gram approach was developed for cases where the number
of features per data point is on the order of 2 million, meaning
D′ would need to be on the order of 20 million to obtain just
10% non-zeros. Beyond a computational requirement in RAM,
this makes the learning problem harder due to the curse of
dimensionality [4].

Because only a smaller set of one hundred thousand to one-
million features are frequent enough for use, the hashing trick
is wasteful and slow for our use case. Instead we would like
to determine the top-k most frequent features in the first place,
reducing overall computation.



A number of algorithms have been developed to select the
top-k most frequent items from a running stream of data using
a fixed amount of memory with only one pass over the data
[5]–[9]. By treating the features from documents as a stream,
we can use these methods to select the top-k most frequent
items of the stream. Compared to the hash-gram approach, this
has the advantage of retaining the original objects — which
aids in model interoperability.

The Space-Saving algorithm [10] in particular has become
one of the preferred algorithms for top-k selection from a
stream. In cases like our own, where only insertions into the
index are performed, its been found that the Space-Saving
algorithm is especially effective with a number of advantages
in terms of guarantees on the error rate, higher recall and
precision, and computational efficiency [11]. A parallelized
version of the Space-Saving algorithm has also been developed
by running multiple instances independently, and then merging
the results after [12], [13]. As such it makes an ideal comparison
point in terms of efficiency for selecting the top-k. A primary
difference in intended uses exists though. The Space-Saving
algorithm is often used with the desire to keep k ≤ 10, 000
items. In our case we want to select the top k = 1, 000, 000
features. This is a larger target population than the space-saving
algorithm has historically been used for.

III. HASH-GRAMS AND PARALLELISM

Hash-Grams where developed as an alternative to feature
selection when working with n-grams, where the occurrence of
individual n-grams often follow a power-law distribution such
as the Zipfian distribution. In this scenario, only a small subset
of features will occur frequently enough to be informative to a
machine learning classifier. The majority of features will likely
occur only a few times, making them uninformative. Tracking
n-gram counts to determine the top-k most frequent n-grams
can be computationally demanding, but is a simple and effective
first-pass to feature selection [14]. For example, Raff, Zak, Cox,
et al. [15] found that selecting the top 100,000 most frequent
byte 6-grams was a more effective feature selection process
than seven other first-order feature selection approaches (e.g.,
information-gain).

For large alphabets, such as when using large n-gram sizes,
it is not practical to track every individual n-gram occurrence.
Doing so requires out-of-core processing that immediately
moves the computational bottleneck to disk-IO systems, or
event to network-IO if running in a distributed fashion. Hash-
grams solve this problem by keeping track of only the top-
k hashes of the features, rather than the original features
themselves.

The algorithm specifying the hash-gram approach is given
in Algorithm 1, and in summary has the following steps:

1) Create a large table T of size B to store hashes in
2) hash (h(·)) each item and increment the index of the hash

in the table
3) return the top-k hashes by count based on the index from

the hash table.

Algorithm 1 Hash-Graming [1]

Require: Bucket size B, rolling hash function h(·), corpus of
S documents, and desired number of frequent hash-grams
k.

1: T ← new integer array of size B
2: for all documents x ∈ S do . Done in parallel
3: for n-gram g ∈ x do
4: q′ ← h(q) mod B
5: T [q′]← T [q′] + 1 . Update atomically
6: Tk ← QuickSelet(T, k) . O(B)
7: return Tk

The approach is simple and allows for scaling the size of
the dataset considerably compared to exact counting or other
approximate counting approaches. While noise in the features
occurs since collisions will occur in the hash-table, collisions
come from intrinsically rare features and so do not significantly
impede the accuracy of trained models. Raff and Nicholas [1]
also showed that if the input distribution follows the Zipfian
distribution, then there is a high probability that all top-k hashes
corresponding to the true top-k items will be obtained.

A. Parallel Scaling Issues

The hash-gram algorithm was argued to be easy to parallelize
by simply processing documents in parallel, and performing
the update to T using atomic operations. This is indeed easy
to implement, but does not work efficiently for all Zipfian
distributions, especially when many CPU cores are available.

To understand this, we will review in more detail the
Zipfian distribution characterized by an alphabet of N possible
characters and shape parameter %, which has the Probability
Mass Function (PMF) given in Equation 1. H(%)

N =
∑N

i=1 1/i
%

indicates the N ’th harmonic number of the %’th order.

f(x; %,N) =

{
x−%−1

H
(%+1)
N

1 ≤ x ≤ N
0 else

(1)

The cumulative distribution function (CDF) F (x; %,N) is
given by Equation 2

F (x; %,N) =

{
H(%+1)

x

H
(%+1)
N

1 ≤ x ≤ N
1 x > N

(2)

The Zipfian distribution is one type of power-law distribution,
in which the item of rank 1 is the most frequent, each successive
rank has significantly reduced probability of occurring. As %→
0, the distribution becomes progressively flatter. As %→∞,
the probability mass of the Zipfian begins to concentrate almost
entirely on the first few ranks.

We take a moment to clarify that the parameter % does
not directly translate to the skewness of the resulting Zipfian
distribution, though many prior works refer to it as the
skewness parameter [5], [11], [13]. While the probability mass
concentrates onto about the first rank item as % → ∞, the
skewness as defined by the third standardized moment of the



Zipfian distribution is not monotonic with %. Thus for more
precise clarity, when we refer to skewness for the rest of this
work we are referring to % causing the majority (e.g., ≥ 95%)
of probability mass to concentrate on fewer and fewer items.

The issue with the hash-gram approach occurs with respect
to the shape parameter % of the distribution. As %→∞, the
PDF of (1) will begin to collapse, as we have just discussed.
In the extreme case, almost every sample will return the same
token (i.e., x = 1 — the rank 1 item).

When running in a single-threaded mode (P = 1), this
behavior begins to provide speed advantages. Despite the large
table T in Algorithm 1, the same value in the table (x = 1)
will be accessed over and over again, keeping its value in L1
cache and resulting in faster updates.

As multiple threads are used, contention via the atomic
updates will begin to increase for frequently accessed indices.
The greater the skew, the more the updates will focus on a
smaller set of values, and the greater the contention will be.
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Fig. 1: Runtime (in milliseconds, y-axis) of the hash-gram
algorithm on synthetic data from the Zipfian distribution
f(x; %, 231 − 1). The x-axis shows the shape parameter % of
the distribution, and each plot shows the results at a different
level of parallelism P .

Both of these behaviors can be seen in Figure 1, where we
show the total runtime to insert 108 samples from the Zipfian
distribution into the hash-gram table. The server used for this
experiment, and all others in this paper, has four Intel Xeon
CPUs at 2.1 GHz, each with 20 CPU cores for a total of
80 cores. All experiments will be run with hyper-threading
disabled, and the process pinned to cores across the minimum
number of CPUs.

When the data distribution is flatter (e.g., % = 0.1), we see
that increasing the number of CPU cores regularly increases

the speedup of the algorithm, with diminishing returns starting
at around P = 16 CPU cores.

The story changes as the skewness % increases. When P = 1,
we see a slow but significant reduction in runtime as % increases
due to the aforementioned caching advantages. This benefit
disappears immediately at P = 2 with the impact of update
contention, and we instead see a minor increase in runtime
for P = 2 as % goes to 10. The degradation starts to become
significant at P = 8 CPU cores, and by P = 32 cores the
speedup is no-better than if we had used only 2 CPUs.

We further note the importance that we see significant
performance regressions occur at P = 16 CPU cores. This
means that the issue is not caused by inter-CPU communication
over the slower the QPI bus, which has a latency two-orders
of magnitude slower than intra-CPU communication [16].
Instead just the MESIF protocol that is used to ensure cache-
coherence between cores is enough to induce these dramatic
slow downs [17].

This means that while the hash-gram approach will return
the top-k hashes with high-probability, the algorithm does not
scale well as many scores P are introduced for % > 1. This is
problematic as datasets with greater asymetry in the PMF are
those for which the algorithm’s theory best supports its use, but
practically can not scale as well. Now that we have identified
this issue, we seek to remove this roadblock so that the hash-
gram strategy can be applied more freely without worrying
about just how lop-sided the input distribution may be.

IV. HASH-GRAMS WITH A WRITE BUFFER

The naive approach to solving this issue would be to have
each thread create its own local copy of the global array T ,
and then merge the counts of all T items at the end. This
may seem intuitive because not all B entries of T need to be
merged. Only the top k ·P items from each worker need to be
communicated to guarantee that the exact same top-k items are
retrieved. However, this means P ·B memory is needed for the
P tables. Since B is routinely a value on the order of 232, this
explodes memory cost from the 10 GB scale to the 1 TB scale.

To resolve the performance regressions of the hash-gram
approach in a memory efficient manner, we introduce a thread-
local write-buffer to each individual thread. While write-buffers
are not a new concept, they are usually used to improve disk
based write throughput and generally involve one write buffer
which multiple threads access [18]. Instead we leverage them
to improve memory IO-throughput to reduce contention, and
thus increase parallel efficiency. Our use of the write-buffers
is also different from how they are classically used to reduce
disk-IO. Under normal circumstances, the write-buffer is used
to accumulate a larger number of writes to perform together at
a later point in time to increase efficiency. In our case we will
be using smaller buffers and using a simple eviction strategy
to perform writes from the buffer one-at-a-time. The details of
our approach will be explained below.

Given a thread context Pi, we will keep track of a write-
buffer WBPi that tracks the number of times a given hash
has been incremented. The size of this write buffer will be



small, containing O(P ) entries for each thread-local buffer. For
this reason we also keep track of the original hash value that
occupies the local write-buffer in an “identity” buffer IDPi .

Our new hash-grams with write-buffer approach can then
be summarized as follows, with more explicit detail given in
Algorithm 2:

1) Initiate hash table as normal hash-gram, including thread
local write buffers

2) For each feature, compute its hash and find its position
in the local buffer. If something occupies its space, evict
the occupant.

3) Increment the count for the hash in the local buffer.
4) When all items in a thread’s processing queue are done,

evict all items from local buffer.

Algorithm 2 Hash-Graming with Write-Buffer

Require: Bucket size B, rolling hash function h(·), corpus of
S documents, and desired number of frequent hash-grams
k, and total threads P .

1: T ← new integer array of size B
2: WBPi ← new thread-local integer array of size P for each

of the i ∈ [1, P ] threads.
3: IDPi ← new thread-local integer array of size P for each

of the i ∈ [1, P ] threads.
4: for all documents x ∈ S do . Done in parallel over P

processors
5: for n-gram g ∈ x do
6: q′ ← h(q) mod B
7: q′′ ← q′ mod P
8: if IDPi [q′′] = q′ then . This hash is already in

write buffer
9: WBPi [q′′]←WBPi [q′′] + 1

10: else . Evict old value and update buffer
11: qold ← IDPi [q′′]
12: δ ←WBPi [q′′]
13: T [qold]← T [qold] + δ . Update atomically
14: WBPi [q′′]← 1
15: IDPi [q′′]← q′

16: Tk ← QuickSelet(T, k)
17: return Tk

Because each thread context will get its own local buffer
with only O(P ) memory requirements, the additional memory
cost of our approach is minuscule. In particular we will use
P · c total capacity for each local buffer, and will use a value
of c = 5 for all experiments unless specified otherwise. This
small size means it is easy to keep the entire write buffer in
local L1 or L2 cache.

Since each thread is maintaining its own local write buffer,
we do not need to implement any additional thread-safety or
locking mechanism, keeping overhead minimal. To further
minimize overhead, we do not use any First-In First-Out or
Least Recently Used mechanism. Instead items will be removed
from the write buffer based on collisions with new entries.

The simplicity of this buffer means that the overhead for
updating the local write buffer with an eviction costs are on
the order of an L1 memory access read and write. The evicted
item must then perform the more expensive index into main
memory to perform an atomic update to the shared T array.
This later step was the only step before. Since the access to L1
cache is orders of magnitude faster than main-memory updates,
the relative cost of our buffer will be negligible in the case
that % ≤ 1 (i.e., the case of low contention from Figure 1 will
continue to perform well).

When contention is higher (% > 1), the efficiency of our
approach is dependent on the local buffers working to collect
multiple updates to frequent items before evicting them due to
a hash collision. We perform such analysis below to show that
we expect this approach to reduce contention despite the lack
of any new communication logic between threads and buffers.

A. Analytic Analysis of Write Buffer Efficiency

In analyzing the benefit of the write buffer, we will divide the
inputs coming into the hash-gram algorithm into two groups:
hot items and infrequent items. Hot items are those which are
seen frequently and cause atomic update contention due to
their frequency. Infrequent items are those that do not cause
any communication overhead because they do not incur CAS
contention. For our analysis we assume that only the top κ items
from the Zipf distribution are “hot”, and causing contention via
CAS updates. Necessarily, κ < P , as if there where more “hot”
items than threads, there would be little contention to perform
updates because each thread could be updating a different hot
item. Then all threads would be performing updates and no
contention would occur.

Because all updates first hit the local write buffer WB, there
are only a select number of scenarios:

1) An infrequent item evicts another infrequent item from the
table: In this case only minor overhead occurs to perform
a read and write from the local buffer, which due to its
small size should be contained within L1/L2 cache and
have fast access.

2) A hot item evicts an infrequent item: The overhead is
still small, and the hot item should begin to collect larger
counts.

3) A hot item evicts another hot item: This scenario is rare
due to the limited number of hot items.

4) An infrequent item evicts a hot item: So long as this occurs
infrequently, we obtain lowered contention by collecting
the increments locally and coalescing the updates into one.

Scenarios 1 and 2 are of little consequence, as they involve
the eviction of an infrequent item from the buffer. We necessar-
ily expect this to happen continuously due to the large number
of individually infrequent items. As such we are interested
scenarios 3 and 4.

Hot Evicts Hot: For scenario 3, we are concerned that hot
items may evict other hot items. Because items are placed into
the local buffer based on their hash value, if both items are hot,
we then expect the issue to occur continuously and cause update
contention with other threads. As such we want to know the



probability that two hot items will share the same local buffer
position. This amounts to the well known Birthday Problem,
where the number of potential “birthdays” is the local table
size and the number of “people” is the number of hot items.

Looking back at Figure 1, we can see the problem with
skewness causing contention occurs once % > 1. If we use
% = 2, then at least 95% of all probability mass will collapse
onto the first three items ∀N ≥ 4, so essentially we would
have only κ = 3 hot items. Using P · 5 buckets on our 80-core
server, this means there is a 99.25% chance that all items will
belong to differing buckets.

We can calibrate the multiplier c used on the number of
processors P to larger values if we desire higher confidence
that no hot-hot birthday collisions occur. Even a multiplier of
100 would only place us in the KB range for the local buffers,
making the cost minimal. Values of % ≤ 1 do not need to be
considered because they violate our κ < P assumption and
thus have no performance issues, as is seen in Figure 1. Thus
we do not have to worry about scenario 3.

Infrequent Evicts Hot: Scenario four is that an infrequent
item evicts a hot item. We expect this to occur regularly, the
goal is that the rate of occurrence will be lower, such that only
1 out of P threads will be performing a CAS update of the hot
item at a time. If only one thread is performing a CAS update,
then the update can proceed with no contention overhead. To
simplify our analysis, we assume that all hot items are currently
in the local buffer WB. This is likely to occur on a regular
basis since the hot items occur regularly. We want to know
the probability that the next item will be an infrequent item
that evicts a hot item. If this probability is less than 1/P , than
intuitively we obtain a situation where we expect no contention
for updates on average. This is because we will have P threads
each performing an update to T with probability 1/P .

When a new item g ∼ Zipf(N, %) arrives, the probability
that it is one of κ hot items is the CDF of the Zipf distribution,
F (κ;N, %). In this case the local buffer for g gets incremented,
and no updates to the global count array T are performed. Then
with a probability 1 − F (κ;N, %) we will obtain an item g
that is an infrequent item. Once an infrequent item is sampled,
its also necessary that it collided with one of the κ hot items
to cause an eviction we care about. If the infrequent item
collided with another infrequent item, that would devolve back
to scenario 1 which we already know to be of low overhead.

The sampling of an infrequent item and it having the same
hash index in the local write buffer as a hot item are independent
events. Thus we arrive at a the probability of the next item g
causing an eviction of a hot item is (1− F (κ;N, %)) · κ/P .

Using our previous example of % = 2 and κ = 3 hot items
that account for 95% of the probability mass, our 80 core
machines would have a probability of only 0.1875%. This is
less than the 1.25% probability for the 1/P goal, and is only
reduced by the fact that we use P · 5 in our experiments.

We note as well that this analysis is somewhat pessimistic,
as we are assuming that the eviction of any hot item should
occur with probability ≤ 1/P . In actuality, if two different hot
items are evicted from differing buffers at the same time, they

will not cause any increased contention because they will go
to different indexes in the table T .

As such we have now shown analytically how we expect
our local write buffer approach to reduce update contention of
hot items in the global count table T .

V. EXPERIMENTS

Now that we have described our new hash-gram approach
with write buffers and analytically shown how it reduces
communication overhead, we will provide empirical exper-
iments validating the results. For all experiments we will be
inserting 108 samples from the Zipfian distribution so that
the distribution of samples is known and we can look at the
change in performance as a function of %. We continue to use
our four socket Intel Xeon CPUs at 2.1 GHz, each with 20
CPU cores for a total of 80 cores. All experiments will be run
with hyper-threading disabled, and the process pinned to cores
across the minimum number of CPUs.

A. Write Buffers Empirically Improve Performance

We first look at results under the same experiment shown in
Figure 1, where we look at the time to digest all samples as a
function of %. The results using our new write buffer approach
are shown in Figure 2.
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Fig. 2: Runtime (in milliseconds, y-axis) of the hash-gram with
buffer algorithm on synthetic data from the Zipfian distribution
f(x; %, 231−1). The x-axis shows the skewness parameter % of
the distribution, and each plot shows the results at a different
level of parallelism.

Originally we saw that for the naive hash-gram approach,
runtime decreased as % increased when P = 1, but began
to degrade as more cores where used and % > 1, creating a
bisection of behavior types. We now see that for P ∈ [1, 80], no
dramatic performance regressions occur. The observation that



runtime decreases as % increases now applies across all numbers
of threads, and actually becomes stronger as P increases.

Related to this behavior, we can see runtime characteristics
improve with the number of cores and %. While there are no
performance regressions, we continue to observe diminished
returns in speedup after P = 16 CPU cores when % ≤ 1, which
appears to be caused by the memory-wall phenomena [19].
When the input distribution is sufficiently uniform, most updates
require accessing an index in T that was not previously in cache,
and thus requires a trip to main-memory. The total amount
of bandwidth to main-memory is limited, and appears to be
saturating as more cores are used. However, as % > 1, we obtain
cache efficiencies for the hot items that re-occur regularly and
make the majority of the probability mass. This gets leveraged
by the local write buffers for fast updates, and reduces the
demand on the amount of needed memory bandwidth.
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Fig. 3: Runtime (in milliseconds, y-axis) of the hash-gram with
buffer algorithm on synthetic data from the Zipfian distribution
f(x; %, 231−1). The x-axis shows the skewness parameter % of
the distribution, and each plot shows the results at a different
level of parallelism.

We show overall speedup results for different values of % in
Figure 3. Here we make note that the speedup for hash-grams
is measured relative to the single-core performance using the
same value of %. This is necessary to accurately capture the
differences due to cache benefits exhibited after we introduce
our write buffer. In the plot, solid lines show the performance
with our new write buffers, and dashed lines show the naive
original hash-gram approach to multi-core parallelism. Here it
becomes clear that the hash-gram with buffer has consistent
speedup, with moderate improvement as % increases — where
the naive approach has initial speed improvements but declines
into significant performance regressions.

B. Hash-Grams vs Space-Saving

We now look at the relative performance difference between
the hash-gram data structure and the parallel space-saving
algorithm. The parallel variant was introduced by Cafaro,
Pulimeno, and Tempesta [12], who showed near linear speedups
on Zipfian data when keeping track of the top k = 4000 items
for up to P = 8 cores. Later Cafaro, Pulimeno, Epicoco, et al.
[13] showed significant speedups when using up to k = 8, 000
items on up to P = 512 CPUs via MPI programming. In
doing so they observed that parallel efficiency did between to
decreased as k increased, and we use a Java implementation
of the Space-Saving algorithm1 to create a level playing field
with our Java hash-gram implementation.
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Fig. 4: Speedup of the Space-Saving algorithm on synthetic
data from the Zipfian distribution f(x; %, 231 − 1). The x-
axis shows the number of CPU cores P used, and each plot
shows the results at a different level of parallelism. Done with
B = 10, 000.

In Figure 4 we look at the speedup of just the Space-Saving
algorithm as the shape parameter % changes from one extreme
(0.1) to another (10) when seeking to obtain the top B =
10, 000 elements. In this case our results confirm those reported
by Cafaro, Pulimeno, Epicoco, et al. [13] for a similar value
of k over a wider range of %. However, we can not look at
the speedup of Space-Saving in isolation, because the standard
single-core hash-gram algorithm is faster than the space-saving
approach. We are also interested in a much larger value of B
than has been investigated in prior works of the Space-Saving
algorithm.

In Figure 5 we show the relative speed of the Space-Saving
algorithm compared to the hash-gram approach on the same
data with the same number of cores in use. This is done with
a more realistic value of having the Space-Saving algorithm

1Implementation from https://github.com/fzakaria/space-saving
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Fig. 5: The y-axis shows the relative Speed of the Space-Saving
algorithm compared to that of the hash-gram approach. Values
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faster. The x-axis shows the number of CPU cores P used, and
each plot shows the results at a different level of parallelism.
Done with B = 200, 000.

track B = 200, 000 items, so that we can hopefully obtain an
accurate estimate of the top k = 100, 000 items.

In doing so we see that the Space-Saving algorithm is
competitive in performance when % > 1 and P ≤ 32.
While slightly slower in initial single-threaded performance,
the improved parallel scaling of the Space-Saving algorithm
allows it to become computationally faster than the hash-gram
approach by a maximum factor of 2.6. However, as P increases
the communication overhead of the parallel space-saving begins
to dominate and make it over 12 times slower than the hash-
gram approach.

When the Zipfian distribution has a relatively flatter distri-
bution (% ≤ 1), we see that the additional overhead of the
Space-Saving updates makes it 100 to 1000 times slower than
the hash-gram approach for only 1 CPU core. This does not
begin to improve until after P = 16 CPU cores, where the
speedup of the Space-Saving algorithm out-paces that of the
hash-gram approach. However this ends quickly at P ≥ 32,
where again the communication overhead of the parallel Space-
Saving algorithm begins to dominate costs. Overall, the Space-
Saving algorithm is always 10-100x slower than the hash-gram
approach for low-skewed data.

At best, the Space-Saving algorithm has comparable and
slightly better runtime for a limited number of cores P and
only for % > 1. Overall the hash-gram with our write buffer
provides consistently high throughput across all combinations
of % and P . In additional the Space-Saving algorithm has the

disadvantage that it was only tracking B = 200, 000 items total.
Practical use is further hampered by not knowing how much
larger B must be compared to k for the Space-Saving algorithm
to return the exact top-k items. Under the Zipfian assumption,
worse case proven bounds would require B = O(k2), where the
hash-grams probabilistic proof keeps the cost linear with k so
long as k < B. This was shown in the original hash-gram paper
[1]. This means we could require considerably larger values of
B for the Space-Saving algorithms, and performance decreased
as the value of B increases [1]. The hash-gram’s approach
performance is minimally impacted by the desired number of
items k, and with our write-buffer approach, parallelizes well
across a wide range of % and P .

VI. MALWARE DATA EXPERIMENT

All of the prior experimentations and tests in this section have
been focused on data generated from the Zipfian distribution.
This allows us to quantify and isolate the root cause of the
performance issue. We now look at performance on a real-
world malware classification dataset.

The data we use comes from [20], which has approximately
2-million binaries evenly divided between benign and malicious.
Each file is g-zip compressed, and occupies 3.5 TB of disk
space when compressed. Computing 6-byte n-grams as features
for this dataset originally took 2 weeks on a cluster with 12
servers.

Following the original hash-gram paper, we have imple-
mented the hash-gram algorithm in Java and tested it on this
same corpus, and use the Rabin-Karp rolling hash function
[21] to convert byte sequences into hashed integers.

Apriori we would not expect our write-buffer improvements
to have as dramatic an impact on this dataset. When sampling
data from the Zipfian distribution the atomic contention and
updates make the majority of work. On this real world data a
number of other items require CPU time but do parallelize well,
namely reading the files from disk and decompressing them in
memory. As such Amdahl’s law [22] tells us we should expect
a reduced impact from improving parallel efficiency. At the
same time, our experimentation tells us contention overhead
will be significant when data is highly skewed, which prior
work has found to be true for byte n-grams of malware [15].

When we run the original hash-gram algorithm on this corpus,
we find that the total runtime is 12 hours and 36 minutes. Using
our improved hash-gram with write-buffer, we see execution
time drop to 11 hours and 32 minutes. This gives us a 9%
improvement in runtime on a real world dataset where the hash-
gram updates of the global array T are the minority of the
work involved, showing that the issue we identify is of practical
concern and can be resolved with our write-buffer approach.
This speed improvement comes with no appreciable change
in model accuracy, which is in line with prior work using the
hashing-trick that obtained almost no quality degradation even
with a 40% collision rate [2].

VII. CONCLUSION

We have studied a performance deficiency of the hash-gram
algorithm when a large number of processors P are to be used.



When data is of high skewness, atomic overhead contention
dramatically reduces scaling. We have resolved this problem
by introducing a write-buffer approach on in-memory updates
to a larger table. In doing so we observe performance becomes
consistent and better behaved across a wide spectrum of CPU
cores P ∈ [2, 80] and data skewness distributions % ∈ [0.01, 10].
This allows the hash-gram approach to provide speedups by
up to 100x compared to the Space-Saving algorithm for the
many-core scenario.
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