
Neural Fingerprint Enhancement
Edward Raff

Booz Allen Hamilton
raff_edward@bah.com

Abstract—Biometrics fingerprint matching has been done with
a heavily hand-tuned and designed process of classical computer
vision techniques for several decades. This approach has led
to accurate solutions for solving crimes today and, as such,
little effort has been devoted to using deep learning in this
domain. Given that convolutional neural networks have shown
dominance for most other image-based problems, we re-evaluate
their potential for improving the fingerprint matching process. By
leveraging synthetic data generators, we show that one can train
a neural fingerprint enhancer to improve matching accuracy on
real fingerprint images. Our approach is both simple in design
and for potential deployment and adoption in real world use.

Index Terms—fingerprints, neural networks, biometrics

I. INTRODUCTION

Deep Learning has become a popular technique for many
biometric tasks such as face, iris, handwritten signature, and
gait recognition, yet these newer neural network techniques
have found relatively little use in fingerprint matching and
recognition [29]. Instead, two decades of classical image
and signal processing techniques have been applied to the
problem with considerable success [23, 24]. By 2006, before
any resurgence of neural networks in the machine learning
community, these systems where already obtaining low error
rates on all but the most challenging examples [3] and became
integral to the criminal investigation process.

Fingerprint matching and recognition is generally based
around minutiae extraction and matching [22]. The minutiae of
a fingerprint are the locations where the ridges of a print either
ends or combines with another ridge. Minutiae are characterized
by their relative location to one another, type, and orientation.
These are often represented as a graph, and graph-matching
used to compare fingerprint minutiae [11]. At a high level, the
standard process for minutiae extraction takes the following
steps:

1) Pre-process the image to counter various forms of noise
and quality issues.

2) Estimate information about the orientation of the ridges
in a fingerprint.

3) Apply a process to identify minutiae locations, and use
pre-processed image and orientation data to characterize
minutia.

4) Post-process minutiae to remove common spurious, incor-
rect, and unreliable identifications.

In this work, we seek to re-evaluate the potential for neural
networks to add value to the fingerprint matching process by
exploiting the deep understanding and modeling that has been
done with fingerprint images. In particular, Cappelli [4][2]

developed software to generate realistic fingerprint images,
allowing the user to set and control different properties of the
fingerprint such as rotations, noise, damage, and more. In this
work, we will leverage Cappelli’s software to generate training
data for a denoising convolutional auto-encoder. Specifically,
we use a neural network to learn the inverse of the noising
process that converts the ground-truth ridge patterns into a
noisy and realistic fingerprint. The goal will be to then apply
the learned function as a neural fingerprint enhancement (NFE)
technique before the minutiae extraction process, similar to
how Gabor filters [25] and 2-D Fourier Transforms [5] are
often used for fingerprint enhancement today.

We specifically look at enhancing images before processing
with existing minutiae extractors and matchers because we
believe it is a viable method to achieving real-world adoption.
Adoption by law enforcement will be preceded by FBI certifi-
cation and guidance, court admissibility, extended validation,
and a host of other issues. By keeping all of the already
accepted technologies in place, and adding one pre-processing
step with our NFE, we minimize the risk and effort for law
enforcement agencies to test and adopt our technique. It can
be used concurrently with any existing product or methods to
do continuous testing and, if accepted, can simply sit in-front
of already trusted tools. If a failure case occurs, users can
simply re-process the fingerprint without our NFE to see if
their original tooling would have succeeded.

The rest of our paper is organized as follows. We will
address related work in using neural networks in the fingerprint
domain in section II. In section III we will review our network
design and our methodology to train and evaluate it. Then we
will present results showing our NFE improves matching on
both unseen real fingerprint images, as well as a challenging
synthetic test set, in section IV. Finally we will conclude in
section V.

II. RELATED WORK

The general theme of our work is to use neural networks to
model problems that have been understood well enough that
computer generated simulations are currently at or near the
point of fully specifying the problem space. Shrivastava et al.
[28] used Generative Adversarial Networks (GANs) to increase
the realism of rendered images of eyes to train a better eye
tracking system. By generating the data themselves, they know
exact ground truth labels. Tompson et al. [31] used CNNs to
reproduce the output of classical 2D and 3D fluid simulations.
Their network could produce predictions fast enough for real-
time simulations, where the classical methods are too slow for

1



Fi
ng

er
Pr

in
t

Conv 32x7x7

Dilated 32x7x7

B
at

ch
-N

or
m

R
eL

U
M

ax
-P

oo
lin

g

Conv 64x5x5

Dilated 64x5x5

B
at

ch
-N

or
m

R
eL

U
M

ax
-P

oo
lin

g

Conv 128x3x3

Dilated 128x3x3

B
at

ch
-N

or
m

R
eL

U
M

ax
-P

oo
lin

g

Conv 256x1x1

Batch-Norm
ReLU

Deconv
128x4x4

Batch-Norm
ReLU

Deconv
64x4x4

Batch-Norm
ReLU

Deconv
1x4x4

Sigmoid
Activation

Fig. 1: Diagram of network architecture. Red boxes indicate that two operations are done on the same input, and their results
are concatenated together as the final output.

such scenarios. Similar to these prior works, we will be using
synthetically generated fingerprints to show the potential for
neural networks to learn a more accurate fingerprint image
enchantment.

The most similar prior work to our own is by Sahasrabudhe
and Namboodiri [26], who trained a convolution Restricted
Boltzman Machine (RBM) to try and enhance fingerprint
images. They trained in an unsupervised fashion on a hand-
picked subset of higher quality fingerprint images from three
different databases. Unfortunately, their approach did not
generalize to new fingerprints, and most analysis was restricted
to the same three datasets that were used for training. We avoid
this overfitting problem by using synthetic data and instead
train in a supervised fashion to directly learn the denoising
goal, and will show that our approach improves performance
on new data.

Several works have looked at using multiple neural networks
to perform minutiae extraction, combined with additional hand
tuned techniques to post-process results by still using classical
enhancement techniques like gabor filters [6, 13, 19]. None
of these prior works have evaluated the ability to perform
accurate matching with these minutia, which is the ultimate end
goal. In our work we measure the performance with respect
to the goal of accurate matching, and explicitly remove as
much domain knowledge and hand-coded image processing
from our approach. Work in fingerprint liveness detection (i.e.,
is the fingerprint from a real finger) has followed a similar
path of using considerable hand-designed computer vision pre-
processing [20, 33].

Most other works we are aware of that have used neural
networks in the fingerprint domain tackle specific sub-goals
in larger hard-coded pipelines. Olsen et al. [21] used Self
Organizing Maps to evaluate the quality of sub-portions of an
image. Yong-xia et al. [36] used neural networks to find the
core of a finger print. Sarbadhikari et al. [27] used a simple
fully connected network atop FFT based features to classify
prints into types (left & right loop, whorl, twin loop, and plain
arch).

III. METHODOLOGY

We will now review the methods by which we construct,
train, and evaluate our network. The network will be a relatively

shallow architecture allowing for fast execution and handling
variable input sizes. Training will be done on synthetically
generated fingerprints, and evaluation will occur on both real
and synthetic prints.

A. Neural Network Architecture and Training

The overall design of our denoising neural network is
given in Figure 1 and is fully convolution. This allows our
network to be applied to inputs of any size. This is important
since there is no fixed standard size of fingerprint images.
Our network starts with of four layers of convolutions, each
followed by the use of batch-normalization [9], the ReLU
non-linearity [18], and then max-pooling. For each set of
convolutions, we split them between the use of standard and
dilated convolutions [37]. We start with a total of 64 filters split
between each convolution type, doubling the number of filters
after each round of pooling. The outputs of these two forms
of convolutions are concatenated, and then given to the next
layer of the network. We use the mix of dilation and standard
in order to capture both local fine-grained details (standard
convolutions), as well as farther non-local details via the
dilation since our network is (relatively) shallow compared to
modern design. After three rounds of convolution and pooling,
we apply 1-by-1 convolutions to perform information sharing
across the filters. Then we apply deconvolution [38] several
times to get to the correct output size, followed by the sigmoid
activation to clamp values into the range of [0, 1] that are
appropriate for our images.

B. Training Data

We use Cappelli’s [3] Synthetic Fingerprint Generator
(SFinGe) version 4.1 to generate our training data. The SFinGe
software allows us to specify a number of parameters regarding
the generation process, including to save ground-truth images
of where fingerprint ridges start and end. An example of a
synthetic fingerprint and the ground-truth image is given in
Figure 2. The goal is to train a neural network to take the raw
input and learn to produce the ridge pattern. We then use the
neural network’s prediction of the ridge pattern as an enhanced
image to use with standard minutiae matching and extraction
approaches.

For our training data we collected 600,000 image pairs
for training using SFinGe with all combinations of the

2



(a) Fingerprint generated with
“variable” quality setting.

(b) Ground truth ridge-line pat-
tern of generated print.

Fig. 2: Example of synthetic fingerprint from SFinGe. Left
image shows the final output (input to the neural network),
right shows the ground-truth ridge pattern (target output of the
neural network).

following settings: Background ∈ {None,Optical,Capacitive}
and distribution as either “Varying quality and perturbations” or
“Very Low Quality”. Fingerprints were generated against 50,000
simulated fingers for each combination, with 2 impressions for
each finger. Across all “Very Low Quality” generated prints we
set the horizontal and vertical translation to ±5% and rotation
to ±25°. All other parameters were left with their default
options, which includes an image dots per inch (DPI) of 500.

C. Minutiae Extraction and Matching

We are applying neural networks only to the task of
cleaning/enhancing the input image. As such, it is still necessary
to use other tools to perform the minutiae extraction and
matching process. If our neural fingerprint enhancement is
effective, we should see performance improve with the use of
any of the tooling. As such, we make use of three tools that
are publicly available.

First, we use the NIST MINDTCT program for extraction
and BOZORTH3 for matching [34]. We will refer to this pair as
NIST for short. Despite the age of these tools, a recent study
has found them to still be competitive in terms of matching
accuracy [22].

Second, we will use the SourceAfis [32] project, which also
has a minutiae extraction and matching algorithm. Because
SourceAfis is compatible with ISO/IEC 19794-2 [10], we can
use the SourceAfis matching algorithm with a different minutiae
extractor. DigitalPersona, Inc. released their FingerJetFX com-
mercial solution for minutiae extraction under an open source
license [8] . We will denote the use of just SourceAfis for both
extraction and matching as SA, and the use of FingerJetFX for
extraction with SourceAfis for matching as FJ+SA.

Both the NIST and FJ extractors uses a 2D block FFT
in a similar style as Chikkerur et al. [5]. As such, if we
see NFE provide an improvement over FJ+SA and NIST,
then we can infer that our approach improves upon the
hand turned classical computer vision approach to fingerprint

enhancement. Significant prior testing has shown FFT and
Gabor based processing to deliver similar high performance
[30]. SourceAfis uses its own custom enhancement and ridge
smoothing algorithm developed and refined since 2009. Again,
our goal is to see that learning the image enhancement process
can improve results, thus simplifying the need for fine tuning
and maintaining such complex systems for fingerprint matching.

D. Evaluation on Real Fingerprints

The first set of datasets we will use to validate our
approach are real fingerprints from the Fingerprint Verification
Competitions (FVC) that were run in 2000 [14], 2002 [15],
and 2004 [16]. Each of these competitions has four constituent
“databases” (DBs) of prints collected from real people using
differing fingerprint readers, and under varying conditions that
would introduce noise (such as drying or moistening the fingers)
in order to increase the challenge of matching. The fourth
database from each of these competitions was synthetically
generated using earlier versions of SFinGe. Since our concern
is with generalization to real fingerprints, the we exclude the
fourth DB from these evaluations. The FVC2004 competition,
according to the authors, was meant to be “markedly more
difficult than FVC2002 and FVC2000”1. A summary of the
databases under test is given in Table I.

TABLE I: Fingerprint Verification Competition (FVC) datasets.

Year DB# Sensor Type Image Size DPI

2000
1 Low-cost Optical 300x300 500
2 Low-cost Capacitive 256x364 500
3 Optical 448x478 500

2002
1 Optical 388x374 500
2 Optical 296x560 569
3 Capacitive 300x300 500

2004
1 Optical 640x480 500
2 Optical 328x364 500
3 Thermal 300x480 512

For each database from each competition year, the finger-
prints of 10 persons are made publicly available. Each person
had their fingerprint taken 8 different times, resulting in a
total of 80 images. Due to the small number of total images
and persons, we will perform Leave-One-Out (LOO) cross
validation on each of the FVC databases from each year. We
will record two metrics of interest, the 1-nearest neighbor
(1-NN) error (i.e., how often do we fail to return another
fingerprint from the same person) and the Area Under the ROC
curve (AUC). Because each database has only 10 participants,
it is easy for ties to occur. As such the AUC will be our
primary focus. The AUC is the sum of area under the trade-off
between a false positive rate and a true positive rate, and can
be interpreted as the quality of the ranking produced by each
method.

Evaluating on real fingerprints from a variety of sensors
helps to determine if our method is truly viable and could
generalize. Toward this end, we note a number of artifacts that

1See http://bias.csr.unibo.it/fvc2004/databases.asp for quote.

3

http://bias.csr.unibo.it/fvc2004/databases.asp


exist within the FVC databases that are not modeled by our
version of SFinGe. For example, FVC2000 DB1 and DB3 have
circular artifacts from the capture device present in each image.
FVC2002/DB2 is at a 13% higher DPI than what SFinGe
produces and FVC2004/DB3 is using a completely different
type of capture device than what SFinGe can currently model.
Finally, all images in all databases are at differing image sizes
compared to the 256x336 images created by SFinGe.

E. Evaluation on Synthetic Fingerprints

Due to the intrinsic personal nature of fingerprints, there
do not currently exist large corpora from which their behavior
can be studied. This makes determining smaller impacts on
performance difficult. Solving this problem is part of the
purpose of SFinGe’s development, as it allows us a safe way
to generate testing corpora of arbitrary sizes.

As such, we use SFinGe to generate a test corpus with the
“Very Low Quality” settings as described in subsection III-B.
We generate 100,000 total fingerprints, each with two im-
pressions. The first impression of all 100,000 prints will
be enrolled, and querying will be done with the first 1,000
second impressions. This gives us a larger sample size to more
accurately determine if NFE improves upon the 1-NN error rate
when matching, and if NFE improves matching for the most
challenging of fingerprints. We make sure to use a different seed
for the test dataset than used in all the training set generations
so that the network is not attempting to classifying the “same”
finger.

IV. RESULTS

Training our NFE took only six epochs on a Nvidia Titan X
GPU. Only six epochs where used due to a lack of compute
resources and time. A batch size of 64 used all 12 GB of
RAM, and took 17 hours to train. Reading in a fingerprint,
applying NFE, and saving it back to disk as PNG took an
average of 0.618 seconds per image. This time could be reduced
significantly by applying weight quantization [12] and pruning
[17], and integrating matching tools so that the output doesn’t
need to be written back to a slower HDD2. However these
improvements are beyond our current scope. Instead we will
compare the performance of our three minutiae extraction and
matching algorithms on both real and generated test sets.

A. Real Fingerprints

For our evaluation on real fingerprint images, we use the nine
databases as discussed in subsection III-D. For each database
all three minutiae extraction and matching algorithms, NIST,
SA, and FJ+SA, were run with LOO cross-validation twice —
first on the original fingerprint images, and then with our Neural
Fingerprint Enhancement. Our primary goal is to see that NFE
improves the matching accuracy for all of these algorithms as
a pre-processing step. All of these results for each algorithm,
dataset, and approach can be found int Table II. The third
and fourth columns show 1-NN errors and AUC without any

2The HDD overhead causes GPU utilization to average at only 40%

additional pre-processing, and the last two columns show the
same results but with our NFE pre-processed images.

TABLE II: Comparing fingerprint matching on multiple real
fingerprint corpora. First column is the year and database
number of the FVC competitions. Second column is the base
matching algorithm being used. Third and fourth column shows
the error rate and AUC when using each algorithm. Last two
columns show error and AUC when the image is first pre-
processed with our neural finger enhancement. Best results in
each row for each metric shown in bold, ties show in italics.

Standard NFE

Year/DB# Algorithm Errors AUC Errors AUC

2000/1
NIST 7 92.77 1 99.00
SA 11 83.93 0 99.46
FJ+SA 8 88.95 0 99.87

2000/2
NIST 7 96.12 4 97.30
SA 3 94.48 4 95.60
FJ+SA 0 98.23 3 95.49

2000/3
NIST 2 95.05 7 96.26
SA 3 88.06 8 86.35
FJ+SA 2 93.70 10 86.81

2002/1
NIST 0 97.59 3 97.97
SA 0 99.02 0 99.12
FJ+SA 0 97.46 0 99.51

2002/2
NIST 1 99.41 0 99.18
SA 0 99.88 0 99.23
FJ+SA 0 99.84 0 99.12

2002/3
NIST 1 96.56 1 96.75
SA 1 97.35 0 99.23
FJ+SA 1 96.24 0 97.92

2004/1
NIST 3 95.53 3 92.88
SA 0 96.60 0 96.93
FJ+SA 0 97.01 0 96.11

2004/2
NIST 9 90.78 4 92.43
SA 3 90.85 0 95.33
FJ+SA 7 88.83 1 96.04

2004/3
NIST 4 92.43 0 99.22
SA 0 95.23 2 95.28
FJ+SA 1 96.04 0 98.83

To answer the overall question, “Does NFE improve the AUC
of fingerprint matching?”, we run a Wilcoxon signed rank test
[35]. The Wilcoxon test is preferable to the more common
t-test and Friedman test to compare the relative performance
of differing algorithms[1, 7]. Running the Wilcoxon signed
rank test to compare if the NFE AUC is greater than results
without NFE gives us a p-value of 0.020492, a statistically
significant result demonstrating that our new approach is an
improvement.

Because of the small population size in these test sets, and
generally high accuracy of current matching methods, focusing
on just the 1-NN results in a number of ties. Some of these ties
occur with no 1-NN errors, but still have significantly differing
AUC scores. This is because the AUC includes the relative
ranking of all seven enrolled fingerprints that belong to the
query print. For example, consider a person ζ with query print
ζq , and two enrolled prints ζ1 and ζ2. If ζ1 is returned as the

4



closest fingerprint to ζq and ζ2 is deemed the farthest (i.e.,
least similar) fingerprint to ζq , this will result in a lower AUC
score. Ideally we would see ζ1 returned as the closest, with ζ2
returned as the second closest.

Looking at individual tests, we see that NFE provides the
largest gains in matching performance on the most difficult
corpora. In particular, FVC2000/1 was the most difficult
database for all algorithms, with up to 11 errors. NFE reduced
the number of errors down to a maximum of 1 error and
the AUC improved by up to 15.5 whole points. The test on
FVC2004/2 saw similar uniform improvements in performance.
Most other datasets had low enough error rates that changes
are not necessarily meaningful or resulted in ties, but NFE still
tended to improve AUC.

(a) Original print (b) NFE enhanced print

Fig. 3: Example of NFE failure case on the FVC2000/3
database. The database contains a number of properties beyond
what SFinGe generates, causing some errors to occur in the
enhanced print.

The notable failure of NFE was on the FVC2000/3 database,
where NFE had a non-trivial increase in error rates. Manual
inspection of these results indicates the failure appears to be
caused by the accumulation of features and properties not
captured by our version of SFinGe. An example is shown in
Figure 3. In the corners of the image we can see that NFE
creates some spurious ridges due to the circular receptive field
of the fingerprint reader. We can also see spurious valleys
be formed within some ridges. This appears to be caused by
this dataset containing fingerprint ridges that are generally
thicker than what SFinGe produces. Last, we see a false ridge
generated at the bottom of the enhanced fingerprint. In the
original image there is a gap that appears to be caused by the
natural gap between the distal phalanx and middle phalanx.
NFE has partially filled in this gap, likely because SFinGe does
not generate impressions corresponding to the middle phalanx.

Despite these distributional differences between our gener-
ated print and the FVC2000/3 database, it’s performance is
not completely destroyed and the AUC was even improved
for the NIST extractor/matcher. We also believe all of these
distributional differences are resolvable. Additional image
backgrounds could be created from real fingerprint readers
to add to SFinGe’s background generation process, the middle
phalanx could be simulated using the same kind of process used
to generate the distal print, and the maximum pressure/dryness

(which affects ridge thickness) could be further increased. In
addition, we remind the reader that all of these databases
contain properties that differ from SFinGe’s generation process.
The FVC2004/3 database in particular was collected using an
entirely different kind of sensor than what SFinGe models and
is at a differing DPI, but NFE still improved the AUC for
all three algorithms and reduced the results of two extracttors
down to zero errors.

The overall conclusion is that NFE does improve fingerprint
matching performance in the majority of cases, and could be
further improved by a more effective synthetic distribution
generation process. If NFE were deployed, users must ensure
that the devices used to capture fingerprints are sufficiently
similar to SFinGe’s output before use, or improve the generation
process to take into account the environmental differences.

B. Simulated Fingerprints

We now look at evaluating NFE’s impact on a larger test
corpus of low quality fingerprints. As described in subsec-
tion III-E we generate a test set of 100,000 “Very low” quality
fingerprints to enroll, and a query set of 1,000 fingerprint
images. This allows us to better quantify NFE’s performance.
The results are shown in Table III.

TABLE III: Results on test-set generated with SFinGen “Very
low” quality. Second and third column show results without
NFE, last two show with NFE. Best results shown in bold.

Standard NFE

Algorithm Errors AUC Errors AUC

NIST 656 91.48 255 97.81
SA 721 81.91 165 96.30
FJ+SA 826 78.79 173 96.05

In each case, a marked and dramatic improvement of every
metric occurs for every algorithm. The largest impact occurs to
the FJ+SA algorithm, reducing 1-NN errors by a factor of 4.8
and increasing the AUC by 17.26 whole points. We note that
these improvements in accuracy are on similar scales to those
seen on real fingerprints in subsection IV-A on FVC2000/3
and FVC2004/2. This seems to indicate that NFE dramatically
improves matching accuracy on the hardest of fingerprints.

An example of one of these low quality fingerprints is given
in Figure 4, where we show the print, NFE’s enhancement, and
the ground truth output. This demonstrates that NFE reduces
the complexities and ambiguities that other algorithms and
software would need to tackle for the majority of the print.
Comparing the result with the ground truth, the majority of
minutiae are correctly formed. Most exceptions occur near the
edge of the fingerprint, or in the particularly low-quality area
near the delta of the fingerprint.

While the AUC indicates uniform improvement of NFE on
this corpus, fingerprint matching must often take into account
differing false positive rates. As such we show the ROC curve
of each method with and without NFE in Figure 5. Here we
can see that not only does each algorithm’s ROC curve with

5



(a) Generated print (b) NFE enhanced print (c) SFinGe ground truth

Fig. 4: Example of NFE success on SFinGe “very low” quality
test set. Left most image shows the generated fingerprint,
middle the result after NFE, and right most the target output.

10−3 10−2 10−1 100

10−2

10−1

100

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

NIST
SA

FJ+SA
NFE NIST
NFE SA

NFE FJ+SA

Fig. 5: Receiver operating characteristic curve for all three
algorithms with and without NFE on the “very low” quality
SFinGe test set. Both axes shown on log scale.

NFE dominate the one without, all of the NFE augmented
algorithms dominate all non-NFE curves.

V. CONCLUSION

By using synthetic training data, we have demonstrated
that it is possible to learn a fingerprint enhancement pre-
processor without the complex pre-processing steps that have
been used in prior works. Our new neural network fingerprint
enhancement improves the AUC for multiple different minutiae
extraction/matching algorithms on real fingerprints, and testing
on additional generated data shows that NFE can significantly
improve results on the hardest of fingerprint images. We believe
our work shows the potential for further development of neural
networks that could simplify fingerprint processing systems
today. In future work, we hope to re-visit some of the other
tasks which have previously designed neural networks with
significant domain knowledge

REFERENCES

[1] A. Benavoli, G. Corani, and F. Mangili. Should We
Really Use Post-Hoc Tests Based on Mean-Ranks?
Journal of Machine Learning Research, 17(5):1–10,
2016.

[2] R. Cappelli. SFinGe. In Encyclopedia of Biometrics,
pages 1–9. Springer US, Boston, MA, 2014.

[3] R. Cappelli, D. Maio, A. Lumini, and D. Maltoni.
Fingerprint image reconstruction from standard tem-
plates. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 29(9):1489–1503, 2007.

[4] R. Cappelli. Synthetic fingerprint generation. Handbook
of Fingerprint Recognition:203–232, 2003.

[5] S. Chikkerur, A. N. Cartwright, and V. Govindaraju.
Fingerprint enhancement using STFT analysis. Pattern
Recognition, 40(1):198–211, Jan. 2007. ISSN: 0031-
3203.

[6] L. N. Darlow and B. Rosman. Fingerprint minutiae ex-
traction using deep learning. In 2017 IEEE International
Joint Conference on Biometrics (IJCB), pages 22–30.
IEEE, Oct. 2017. ISBN: 978-1-5386-1124-1.

[7] J. Demšar. Statistical Comparisons of Classifiers over
Multiple Data Sets. Journal of Machine Learning Re-
search, 7:1–30, Dec. 2006. ISSN: 1532-4435.

[8] FingerJetFX OSE, 2011. URL: https : / / github . com /
FingerJetFXOSE/FingerJetFXOSE.

[9] S. Ioffe and C. Szegedy. Batch Normalization: Accel-
erating Deep Network Training by Reducing Internal
Covariate Shift. In Proceedings of The 32nd Interna-
tional Conference on Machine Learning, volume 37,
pages 448–456, 2015.

[10] ISO/IEC 19794-2:2011. Technical report, International
Organization for Standardization, 2011, page 93.

[11] A. Jain, L. Hong, and R. Bolle. On-line fingerprint
verification. IEEE transactions on pattern analysis and
machine intelligence, 19(4):302–314, 1997.

[12] D. Lin, S. Talathi, and S. Annapureddy. Fixed Point
Quantization of Deep Convolutional Networks. In M. F.
Balcan and K. Q. Weinberger, editors, Proceedings of
The 33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 2849–2858, New York, New York, USA.
PMLR, 2016.

[13] Lu Jiang, Tong Zhao, Chaochao Bai, A. Yong, and Min
Wu. A direct fingerprint minutiae extraction approach
based on convolutional neural networks. In 2016 Inter-
national Joint Conference on Neural Networks (IJCNN),
pages 571–578. IEEE, July 2016. ISBN: 978-1-5090-
0620-5.

[14] D. Maio, D. Maltoni, R. Cappelli, J. Wayman, and
A. Jain. FVC2000: fingerprint verification competition.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(3):402–412, Mar. 2002. ISSN: 01628828.

[15] D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and
A. K. Jain. FVC2002: Second Fingerprint Verification

6

https://github.com/FingerJetFXOSE/FingerJetFXOSE
https://github.com/FingerJetFXOSE/FingerJetFXOSE


Competition. Proceedings of the 16 th International
Conference on Pattern Recognition (ICPR’02) Volume 3
- Volume 3. ICPR ’02, 24(3):402–412, 2002.

[16] D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and
A. K. Jain. FVC2004: Third fingerprint verification
competition. In Biometric Authentication, pages 1–7.
Springer Berlin Heidelberg, 2004.

[17] D. Molchanov, A. Ashukha, and D. Vetrov. Variational
Dropout Sparsifies Deep Neural Networks. In Interna-
tional Conference on Machine Learning (ICML), 2017.

[18] V. Nair and G. E. Hinton. Rectified Linear Units Improve
Restricted Boltzmann Machines. Proceedings of the 27th
International Conference on Machine Learning:807–814,
2010.

[19] D.-L. Nguyen, K. Cao, and A. K. Jain. Robust Minutiae
Extractor: Integrating Deep Networks and Fingerprint
Domain Knowledge. In The 11th International Confer-
ence on Biometrics, 2018, 2018.

[20] R. F. Nogueira, R. D. A. Lotufo, and R. C. Machado.
Evaluating software-based fingerprint liveness detection
using Convolutional Networks and Local Binary Patterns.
In Proceedings of the IEEE Workshop on Biometric
Measurements and Systems for Security and Medical
Applications (BIOMS), pages 22–29, Rome, Italy, 2014.
ISBN: 9781479951765.

[21] M. A. Olsen, E. Tabassi, A. Makarov, and C. Busch.
Self-Organizing Maps for Fingerprint Image Quality
Assessment. 2013 IEEE Conference on Computer Vision
and Pattern Recognition Workshops:138–145, 2013.
ISSN: 21607508.

[22] D. Peralta, M. Galar, I. Triguero, D. Paternain, S.
García, E. Barrenechea, J. M. Benítez, H. Bustince,
and F. Herrera. A survey on fingerprint minutiae-
based local matching for verification and identification:
Taxonomy and experimental evaluation. Information
Sciences, 315:67–87, Sept. 2015. ISSN: 0020-0255.

[23] N. K. Ratha, S. Chen, and A. K. Jain. Adaptive
flow orientation-based feature extraction in fingerprint
images. Pattern Recognition, 28(11):1657–1672, Nov.
1995. ISSN: 00313203.

[24] N. Ratha, K. Karu, Shaoyun Chen, and A. Jain. A real-
time matching system for large fingerprint databases.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18(8):799–813, 1996. ISSN: 01628828.

[25] A. Ross, A. Jain, and J. Reisman. A hybrid fingerprint
matcher. Pattern Recognition, 36(7):1661–1673, 2003.
ISSN: 00313203.

[26] M. Sahasrabudhe and A. M. Namboodiri. Fingerprint
Enhancement Using Unsupervised Hierarchical Feature
Learning. In Proceedings of the 2014 Indian Conference
on Computer Vision Graphics and Image Processing,
ICVGIP ’14, 2:1–2:8, New York, NY, USA. ACM, 2014.
ISBN: 978-1-4503-3061-9.

[27] S. N. Sarbadhikari, J. Basak, S. K. Pal, and M. K.
Kundu. Noisy fingerprints classification with directional

FFT based features using MLP. Neural Computing &
Applications, 7(2):180–191, 1998. ISSN: 0941-0643.

[28] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W.
Wang, and R. Webb. Learning from Simulated and
Unsupervised Images through Adversarial Training. In
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2242–2251. IEEE, July 2017.
ISBN: 978-1-5386-0457-1.

[29] K. Sundararajan and D. L. Woodard. Deep Learning for
Biometrics: A Survey. ACM Comput. Surv., 51(3):65:1–
65:34, May 2018. ISSN: 0360-0300.

[30] E. Tabassi. Development of NFIQ 2.0. Technical report,
National Institute of Standards and Technology, 2012.

[31] J. Tompson, K. Schlachter, P. Sprechmann, and K.
Perlin. Accelerating Eulerian Fluid Simulation With
Convolutional Networks. In D. Precup and Y. W. Teh,
editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 3424–3433, Inter-
national Convention Centre, Sydney, Australia. PMLR,
2017.

[32] R. Važan. SourceAFIS, 2018. URL: https://sourceafis.
machinezoo.com/.

[33] C. Wang, K. Li, Z. Wu, and Q. Zhao. A DCNN Based
Fingerprint Liveness Detection Algorithm with Voting
Strategy. In J. Yang, J. Yang, Z. Sun, S. Shan, W. Zheng,
and J. Feng, editors, Biometric Recognition, pages 241–
249. 2015. ISBN: 978-3-319-25417-3.

[34] C. I. Watson, M. D. Garris, E. Tabassi, C. L. Wilson,
R. M. McCabe, S. Janet, and K. Ki. User’s Guide
to NIST Biometric Image Software (NBIS). Technical
report, National Institute of Standards and Technology,
2007.

[35] F. Wilcoxon. Individual Comparisons by Ranking Meth-
ods. Biometrics Bulletin, 1(6):80, Dec. 1945. ISSN:
00994987.

[36] L. Yong-xia, Q. Jin, and X. Rui. A new detection
method of singular points of fingerprints based on
neural network. In Computer Science and Information
Technology (ICCSIT), 2010 3rd IEEE International
Conference on, volume 1, pages 301–305, July 2010.

[37] F. Yu and V. Koltun. Multi-Scale Context Aggregation
by Dilated Convolutions. In International Conference
on Learning Representations, 2016.

[38] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus.
Deconvolutional networks. In Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference
on, pages 2528–2535. IEEE, 2010.

7

https://sourceafis.machinezoo.com/
https://sourceafis.machinezoo.com/

	Introduction 
	Related Work
	Methodology
	Neural Network Architecture and Training
	Training Data
	Minutiae Extraction and Matching
	Evaluation on Real Fingerprints
	Evaluation on Synthetic Fingerprints

	Results
	Real Fingerprints
	Simulated Fingerprints

	Conclusion

